
Noname manuscript No.
(will be inserted by the editor)

Type Polymorphism, Natural Language Semantics, and TIL

Ivo Pezlar

Received: date / Accepted: date

Abstract Transparent intensional logic (TIL) is a well-explored type-theoretical frame-
work for semantics of natural language. However, its treatment of polymorphic func-
tions, which are essential for the analysis of various natural language phenomena,
is still underdeveloped. In this paper, we address this issue and propose an exten-
sion of TIL that introduces polymorphism via type variables ranging over types and
generalized variables ranging over constructions and types. Furthermore, we offer an
analysis of sentences involving non-specific notional attitudes of the general form ‘A
considers (believes, desires, wants, seeks, . . .) something’.

Keywords notional attitudes · polymorphism · type theory · transparent intensional
logic

1 Introduction

Analysis of notional attitudes exemplified by the following cases:1

– I am thinking of Pegasus.
– Ponce de Leon searched for the fountain of youth.
– Schliemann sought the site of Troy.
– Ctesias is hunting unicorns.

has a long tradition in the semantic analysis of natural language. In this paper, we
will be interested in a more general class of these sentences that can be obtained

Work on this paper was supported by grant nr. 19-12420S from the Czech Science Foundation, GA ČR.

Ivo Pezlar
Czech Academy of Sciences, Institute of Philosophy
Jilská 1, 110 00 Prague 1
Tel.: +420 221 183 348
ORCID: 0000-0003-1965-2159
E-mail: pezlar@flu.cas.cz

1 Examples taken from Church (1951), p. 111, Church (1956), p. 8, and Quine (1956), p. 177.

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Journal of Logic, Language and Information.
The final authenticated version is available online at:

Ivo Pezlar
Typewriter
https://doi.org/10.1007/s10849-022-09383-w

https://doi.org/10.1007/s10849-022-09383-w

2 Ivo Pezlar

by replacing the concrete objects2 of the respective attitudes (thinking, searching,
hunting, etc.) with non-specific ones:

– I am thinking of something.
– Ponce de Leon searched for something.
– Schliemann sought the site of something.
– Ctesias is hunting something.

This represents a specific challenge to type-theoretic approaches to natural language
semantics for obvious reasons: since we cannot know in advance what type of object
is being referred to by ‘something’ (e.g., I can be thinking of people, trees, houses,
places, . . . , numbers, sets, types, functions, etc.) we have to adopt polymorphic prop-
erties that can be applied to an unspecified range of objects. In other words, we have
to introduce polymorphism into the system. There are two general approaches to how
to treat polymorphism which we might call syntactic polymorphism and semantic
polymorphism.3

The first approach treats polymorphism just as a meta-language tool for referring
to a wide range of similar functions. Usually a meta-language symbol is introduced,
e.g., ‘α’, that ranges over all the possible variations. For example, we might encounter
a function isEqual of the type (α → α → Bool) which takes two objects of type α

as arguments and returns True if they are equal and False otherwise. This approach
entails, among other things, that we have similar yet different functions specific for
each type. For example, if we are dealing with the equality of individuals, we get the
function isEqual Ind of the type (Ind→ Ind→ Bool), if we are dealing with natural
numbers, we get the function isEqual Nat of the type (Nat → Nat → Bool), etc.
But, generally speaking, there is no ‘the’ equality function, only its multiple instances
tailored for each type. Hence, (α→α→Bool) is not a type, just a notation shorthand
for various types.

The second approach treats polymorphism as a semantic feature of the system
itself. In practice, this means extending the definition of types and allowing the type
variables to appear on the object level of the framework. For example, using this ap-
proach the type (α→ α→ Bool) is a proper type of the system (or more specifically,
type constructor/type-valued function) and the general properly polymorphic func-
tion isEqual can thus be entertained and applied to objects of any type. For instance,
if we apply the type constructor (α → α → Bool) to the type Ind, we get the type
(Ind→ Ind→ Bool), etc.

In this paper, we investigate the issue of non-specific notional attitudes from
the perspective of transparent intensional logic (TIL; Tichý (1988)). TIL is a well-
explored type-theoretic framework for the semantics of natural language, however, it

2 Similarly to Church (1951), we consider the objects of notional attitudes to be abstract entities rather
than mental ones. For an alternative approach, compare, e.g., with Moltmann (2008) and recently Molt-
mann (2017) utilizing truthmaker semantics.

3 Fox and Lappin (2005) relies on a similar distinction between schematic and genuine polymorphism,
Dužı́ (1993) uses the terms weak and strong polymorphism, and others can no doubt be found as well. It
is worth noting that from the perspective of Cardelli and Wegner (1985) the classification (based on Stra-
chey (2000)) of both these kinds of polymorphism would fall under their category of universal/parametric
polymorphism. In comparison to Cardelli and Wegner (1985), we rely on a rather strict notion of polymor-
phism, since they also include in the kinds of polymorphism, e.g., subtyping and overloading.

Type Polymorphism, Natural Language Semantics, and TIL 3

relies on the syntactic approach to polymorphism where the type variables are treated
just as placeholders. This puts them outside of the semantic framework of TIL and
thus provides much less interesting analyses in return. In this paper, we propose an
extension of TIL that handles polymorphism semantically via type variables ranging
over types and generalized variables ranging over constructions and types. Further-
more, we offer the analysis of sentences involving non-specific notional attitudes of
the general form ‘A considers (believes, desires, wants, seeks, . . .) something’.

This paper is structured as follows: in Section 2 we present the basics of TIL,
in Section 3 we examine closely the treatment of polymorphism and variables in
TIL, in Section 4 we introduce type variables and in the final section, Section 5, we
introduce generalized variables, offer an extension to the ramified type theory of TIL,
and propose a semantic analysis of non-specific notional attitudes.

Remark 1 The problem of polymorphism is closely related to the problem of ‘nomi-
nalization’, i.e., the process of the transformation of non-noun phrases (verb phrases,
common nouns, . . .) into noun phrases and the problem of flexible predicates such as
‘good’, ‘fun’, ‘interesting’, ‘boring’, etc. that are predicable over a variety of types
of objects (‘Sleep is good’, ‘Sleeping is good’, ‘To sleep is good’, ‘That they sleep
is good’, etc.). Also, as was already observed by Chierchia (1982), type theory in
general enforces constraints on the structure of natural language that is not directly
observable. In natural language it seems to be the case that we are using ‘one size fits
all’ predicates, e.g., ‘is interesting’ can be applied to cakes just as to mathematical
results. As Chierchia put it:

A theory [of types] imposes various limitations on the categorial structure of English syntax. As
we will see, in type theory properties (like, say, to be fun) have to be ranked differently in the
type hierarchy according to whether they are attributed to individuals (as in ‘John is fun’) or to
properties (as in, say, ‘to dance is fun’). Such ranking doesn’t seem to have any overt correlate in
the syntactic behavior of predicate nominals like fun in natural languages. So, those limitations
that type theory imposes on English syntax are likely to turn out to be artificial. (Chierchia (1982),
p. 305)

On the other hand, it seems certainly true that in both cases we are encountering
different kinds of ‘interestingness’ with various applicability criteria (an interesting
cake is probably interesting in a different sense than a mathematical theorem) and
many-sorted type-theoretical approaches are well-equipped to handle these differ-
ences. Briefly put, although type-theoretical approaches to natural language seman-
tics without a doubt come with their own set of challenges, the benefits of utilizing
them (e.g., blocking paradoxical behavior due to violations of the vicious circle prin-
ciple, avoiding categorical mistakes, etc.) seem to generally outweigh their potential
drawbacks.

2 Brief introduction to TIL

Transparent intensional logic (TIL, Tichý (1988), Dužı́ et al. (2010), Raclavský et al.
(2015)) is a theory of abstract constructions that utilizes the extended language of

4 Ivo Pezlar

typed lambda calculus with partial functions and focuses on the semantics of nat-
ural language.4 In spirit, it shares many similarities with Montague semantics but
the meanings of natural language expressions are understood rather in terms of algo-
rithms (hyperintensions) than in terms of functions from possible worlds (intensions),
which takes it closer to the systems with an interpreted formal syntax such as Martin-
Löf’s constructive type theory (see, e.g., Pezlar (2017)).

Syntactically, TIL’s theory of constructions can be captured using the following
four construction terms, namely variables, compositions, closures, and n-executions,
respectively:

constructions := x | [CC1 . . .Cm] | [λx1 . . .xmC] | nX

where Ci is any construction, X is either a construction or a non-construction (e.g., a
truth value, an individual, a number, etc.).5

The first three constructions roughly correspond to variables, function applica-
tions, and function abstractions as known from λ -calculus. Construction n-execution
allows us to either execute constructions to determine what object they construct, if
any (if n > 0),6 or not execute them, i.e., leave them as they are (if n = 0).7 What
constructions construct might depend on a valuation v, i.e., an assignment of values
to free variables. In that case, we say that they v-construct. If a construction C v-
constructs nothing at all, we will say that it is a v-improper construction. Otherwise,
we say that C is a v-proper construction. If we have two constructions C1 and C2 that
v-construct the same object X , or they are both v-improper, we will say that C1 and
C2 are v-congruent constructions, denoted as C1 ∼= C2. If they are v-congruent for
all valuations v, we will say that C1 and C2 are equivalent constructions, denoted as
C1 =C2.

In standard TIL, there are four atomic types forming the type base B: truth values,
individuals, real numbers/time moments, and possible worlds, denoted as o, ι ,τ,ω ,
respectively.8 These basic types are then expanded with types of n-th order construc-
tions, denoted as ∗n. If α and β1, . . . ,βm are types, then we can form a function type
(αβ1 . . .βm). Specifically, it is a type of function from the elements of type β1, . . . ,βm
to the elements of type α .9

4 It is worth noting that, strictly speaking, TIL itself is just an applied instance of Tichý’s type theory
(which is a modification of Church’s type theory) intended for the purposes of logical analysis of natural
language (similarly to, e.g., transparent hyperintensional logic (THL) recently employed in Raclavský
(2020)).

5 For a proper specification, see Appendix 7. For the definition of n-execution, see Pezlar (2018).
6 It is important to note that if we allow n-executions with n ≥ 2, the Church-Rosser theorem is no

longer valid in TIL, as was recently demonstrated by Kosterec (2019).
7 In a standard TIL presentation, the cases of n = 0 (i.e., 0-execution also known as trivialization)

and n > 0 are strictly kept apart to emphasize their different logical roles, most importantly, 0-execution
supplies objects (of any type) for compound constructions, while (n > 0)-execution is used for executing
constructions. Furthermore, 0-execution can raise a context of a construction up to the hyperintensional
level, while, e.g., 2-execution can decrease the context down (see, e.g., Dužı́ and Horák (2019)). For more
about TIL and the three kinds of contexts, see Dužı́ et al. (2010), section 2.6.

8 TIL is and open-ended framework and other atomic types can be added, e.g., we can add ν as the type
of natural numbers.

9 Note that TIL relies on the Church notation (αβ) for function types. In a more standard notation, this
would be written as β → α . Furthermore, due to the presence of partial functions, we cannot generally

Type Polymorphism, Natural Language Semantics, and TIL 5

Since constructions can v-construct other objects or be v-constructed by other
constructions they receive two-dimensional typing: the first dimension is the type
of the construction itself, denoted as C/type, the second dimension is the type of
the object the construction is supposed to construct, denoted as C : type. We can
also chain these notations to get C/type1 : type2. For example, [0+ 05 07]/∗1 : ν

which can be read as ‘[0+ 05 07] is a first-order construction typed to construct natural
numbers’.10

To simplify notation, we denote 0-execution by boldface font, with the exception
of standard logical and mathematical symbols such as ‘+’, ‘=’, ‘∀’, ‘⊃’, etc. which
we keep in normal font with 0-execution implicitly assumed. Also, we will use infix
notation whenever expected. For example, instead of ‘[0+ 05 07]’ we will write ‘[5+
7]’ and instead of ‘[0⊃ A B]’ we will write ‘[A ⊃ B]’. Furthermore, we extend the
standard notation of closure construction by including explicit typing of variables and
omit the outer most brackets whenever possible. Thus, we will write λx1 : α1 . . . xm :
αm Y instead of [λx1 . . .xm Y].11

Sample analysis. For example, the sentence:

(s) Alice believes there is a natural number greater than four but smaller than five.

can be analysed as follows (see Fig. 1 for the corresponding type-checking tree):

λw : ω λ t : τ [Believe∗wt Alice 0[∃x : ν [[x > 4]∧ [x < 5]]]]

Reading this construction from left to right (with some minor simplifications):

– ‘λw : ω λ t : τ’ binds the world and time parameters w and t – which receives
the function Believe∗ as two of its four arguments (see below) – and displays
their type annotations, i.e., the variable w ranges over objects of type ω (possible
worlds) and the variable t ranges over objects of type τ (time moments captured
as real numbers),

– Believe∗ is a construction (specifically a trivialization also known as 0-execution)
that constructs the function Believe∗ of type (((oι∗n)τ)ω), usually shortened as
(oι∗n)τω . The superscript ∗ indicates that this is a constructional/hyperintensional
belief (i.e., a belief that a given construction v-constructs a proposition that is true
in a given world and time of evaluation, or that a given construction v-constructs
a truth value true, in the case of mathematics and logic), which is different from
other types of belief (e.g., a sentential belief, i.e., a belief that a given proposition
is true in a given world and time, which would have type (oι(oτω))τω). Infor-
mally, Believe∗ is a function that takes a possible world, a specific time moment
in that world, an individual, and a construction of a proposition/truth value, and

assume that all multiargument functions can be reduced to a series of functions taking a single argument.
In other words, Schönfinkel’s reduction does not hold. For a proof, see Tichý (1982).

10 In TIL literature the symbol ‘→’ is used instead of ‘:’, however, we choose the latter because it leads
to a clearer notation once explicit typing is adopted. Also note that the symbol ‘/’ is used for typing
annotations of non-constructions as well. For example, if we want to declare that addition function + on
natural numbers ν has type (ννν), we can write it as +/(ννν).

11 It is worth mentioning that Tichý (1988) used explicit subscripts with ‘λ ’ to indicate the type of the
output of the constructed function. For example, [λox [Odd x]].

6 Ivo Pezlar

((oτ)ω)

(oτ)

o

∗n

0[∃x : ν [[x > 4]∧ [x < 5]]]]

ι

Alice

(oι∗n)

τ

t]

((oι∗n)τ)

ω

w]

(((oι∗n)τ)ω)

[[[Believe∗λ w : ω λ t : τ

Fig. 1 Type-checking tree

returns true if that individual believes that the construction produces (a proposi-
tion that takes) the truth value true, otherwise f alse.

– ‘wt ’ is used as a shorthand for consecutive applications of world and time param-
eters to the function Believe∗. In full, it should be written as: [[Believe∗ w] t],

– Alice is a construction (a trivialization, see above) that constructs the individual
Alice of type ι .

– 0[∃x : ν [[x > 4]∧ [x < 5]]] is a higher-order construction (due to trivialization)
that constructs a first-order construction, namely the composition construction
[∃x : ν [[x > 4]∧ [x < 5]]]. ‘∃x : ν . . .’ is an abbreviation for ‘[∃ λx : ν [. . .]]’ where
∃ is the existential quantifier of type (o(oν)) applied to the class of numbers
λx : ν [. . .] and returns true if the class is non-empty, otherwise f alse.

3 Polymorphism in TIL

3.1 The Problem

Let us try to analyse our initial examples involving notional attitudes. Since all of
the sentences share an analogous form ‘[subject] + [notional attitude] + [object]’, we
will focus only on the first sentence ‘I am thinking of something’. Furthermore, to
slightly simplify it, we replace the personal pronoun ‘I’ with a proper noun ‘Alice’
and obtain:

(1’) Alice is thinking of something.

In TIL, we can analyze it, e.g., in the following manner:

λw : ω λ t : τ ∃x : ? [Thinkwt Alice x]

which constructs the proposition (a function from possible worlds w and time mo-
ments t to truth values) that is true if there is something Alice is thinking of, other-
wise it is false. However, we encounter problems once we start checking types of the
involved objects. Namely, it is unclear over what type of objects should the variable
x range and, consequently, what the type of the function T hink should be.

Type Polymorphism, Natural Language Semantics, and TIL 7

For specific instances this is straightforward. For example, assuming Alice is
thinking of some individual (e.g., ‘Bob’), we can simply restrict the variable x to
the type ι , i.e., x : ι , and the type of the function T hink would become (oιι)τω , i.e.,
T hink/(oιι)τω . If she is thinking of some property of natural numbers (e.g., ‘being
prime’), we would have x : (oν) and T hink/(oι(oν))τω , etc. But in more general
cases, such as ‘Alice is thinking of something’, where no specific type of object of
Alice’s contemplation is known or can be known, difficulties arise. In particular, we
have no appropriate type to assign to the variable x, which we symbolized by ‘?’ in
the corresponding analysis above. Thus, we need variables that range over objects of
any type, not just over objects of some specific type.12

3.2 TIL: Current State

function/symbol type description
∀, ∃ (o(oα)) universal and existential quantifiers
Sing (α(oα)) singulariser (a function taking a singleton set

and returning its only member)
Card (τ(oα)) cardinality function

All, Some, No ((o(oα))(oα)) restricted quantifiers
= (oαα) identity function
Tr (∗nα) trivialization function

Exist (oατω)τω existence as a property of an intension
Seek (oιατω)τω notional/intentional attitude of seeking

Table 1 Examples of polymorphic functions of TIL

In TIL, we can encounter many type-theoretically polymorphic functions (see
Table 1), but what exactly are they? In Dužı́ et al. (2010) we are given the following
informal explanation in a footnote:

By ‘type-theoretically polymorphous functions’ we mean a set of functions that are defined and
thus behave in the same way, independently of their type. For instance, any member of the set
of functions Cardinality associates a finite class with the number of its elements. Hence this
definition is polymorphous; there are actually infinitely many cardinality functions, one for each
type: Card1/(τ(oι)) – the number of a set of individuals, Card2/(τ(oτ)) – the number of a set of
numbers, etc., which we indicate by using a type variable α in the type of Cardinality/(τ(oα)).
(Dužı́ et al. (2010), p. 86)

From the above description it is clear that the symbol ‘α’ plays the role of type vari-
able. Thus, we can view type-theoretically polymorphic functions as functions whose
types involve at least one occurrence of a type variable. This seems straightforward,
unfortunately, it is not obvious what exactly a type variable from the TIL perspective
is. The only available variables in standard TIL are variables understood as construc-
tion and these do not range over types themselves, only over objects of specific types.

So how should we understand type variables? As already discussed above, there
are essentially only two options how to approach them:

12 The need for type variables was also discussed in Raclavský et al. (2015).

8 Ivo Pezlar

1. Type variables as metavariables: This is the easier, but also the less interesting
answer. Type variables become just syntactic placeholders, which means that they
are beyond the semantic framework of TIL.

2. Type variables as variables: This is the more attractive answer, yet also the more
demanding. Since ‘standard’ variables are considered as constructions, it seems
reasonable to consider type variables as some kind of constructions as well. This
way, type variables would enrich the semantic framework of TIL. However, a new
kind of construction v-constructing types would have to be introduced.

Regarding type variables as metavariables seems to be the implicit approach taken
in Dužı́ et al. (2010).13 Type variable ‘α’ is not considered as a part of TIL’s ramified
type theory, rather as a metalanguage device. See, e.g.,:

Remark. α-sets of elements of type α are modelled by their characteristic functions. Thus they
are (oα)-objects. For instance, a set of individuals is an object of type (oι), a set of real numbers
is an object of type (oτ), a set of couples of real numbers (i.e., a binary relation over reals) is an
object of type (oττ). (Dužı́ et al. (2010), p. 44).

It gets the job done, however, it is somewhat undesirable given the fact that one of
the basic credos of TIL is that it has no use for metalanguage: “TIL does not need a
metalanguage, since [it has] a ramified type hierarchy instead” (see Dužı́ et al. (2010),
p. 55).

Understanding type variables as constructions seems to be the approach most in
line with TIL semantic doctrine. After all, type variables are variables, and variables
are treated as constructions in TIL, thus type variables should be treated as construc-
tions as well.14 Furthermore, this would allow us to regard type variables as proper
entities of the semantic framework of TIL (with appropriately extended ramified type
theory). First, however, we explore TIL’s standard notion of variables as construc-
tions developed by Tichý (1988) (pp. 60–62) and then we propose how to extend it to
cover even type variables and generalized variables.

3.3 Variables

As discussed above, variables are basic constructions of TIL and they construct ob-
jects dependently on a valuation function v. This means, among other things, that
variables are taken as extra-linguistic entities, whose procedural content consists in
retrieving values, i.e., variables are not just symbolic placeholders. To better under-
stand this approach to variables, we will examine Tichý’s original definition from
Tichý (1988).15

Definition 1 (Variable).
Let R be an arbitrary non-empty collection. By an R-sequence we shall un-
derstand any infinite sequence:

13 TIL-Script, the software variant of TIL, also treats type variables simply as syntactic placeholders and
whenever they appear type checking is simply skipped. See e.g., Dužı́ and Fait (2019), p. 223.

14 An alternative syntactic rule-based approach is, however, also possible. For a brief sketch, see Ap-
pendix 7.3.

15 Parts of the exposition of the variable construction follow my PhD thesis, see Pezlar (2016), pp. 6–8.

Type Polymorphism, Natural Language Semantics, and TIL 9

(s) X1,X2,X3,X4, . . .

(with or without repetitions) of members of R.
For any natural number n let |R|n be the (incomplete) [i.e., depending on ex-
ternal sequence] construction which consists in retrieving the n-th member
of an R-sequence. Constructions of this form will be called variables. (Tichý
(1988), p. 60)

Definition 2 (Valuation).
In [a] more general case [where various logical types are needed] we shall
need whole arrays of sequences containing an Ri-sequence for each type Ri.
We shall call such arrays valuations. Thus, where R1,R2,R3,R4, . . . is an enu-
meration (without repetitions) of all the types, a valuation is an array of the
form

(v)

X1
1 ,X

1
2 ,X

1
3 ,X

1
4 , . . .

X2
1 ,X

2
2 ,X

2
3 ,X

2
4 , . . .

X3
1 ,X

3
2 ,X

3
3 ,X

3
4 , . . .

X4
1 ,X

4
2 ,X

4
3 ,X

4
4 , . . .

...

where X i
1,X

i
2,X

i
3,X

i
4, . . . is an Ri-sequence. Let v be this valuation. Relative

to v, the variable |Ri|n constructs X i
n, i.e., the n-th term of the Ri-sequence

occurring in v. (Tichý (1988), p. 61)

Thus, a valuation array is, simply put, a sequence of sequences – to make this more
apparent, we will utilize the following list notation:

v =


[
X1

1 , X1
2 , X1

3 , X1
4 , . . .

]
,[

X2
1 , X2

2 , X2
3 , X2

4 , . . .
]
,[

X3
1 , X3

2 , X3
3 , X3

4 , . . .
]
,[

X4
1 , X4

2 , X4
3 , X4

4 , . . .
]
,

...


For example, let us have the following toy valuation array (or valuation for short) v1:

v1 =


[
true1

1 , f alse1
2
]
,[

12
1 , 22

2 , 32
2 , . . .

]
,[

Alice3
1 , Bob3

2 , Cecil3
3 , Dana3

4 , . . .
]
,

...


In this case, the variable |R1|2 receives through v1 the value f alse, |R3|1 retrieves
Alice, etc. So what is a variable from Tichý’s point of view? It is essentially a search
and retrieve mechanism that takes the coordinates 〈i,n〉 and some valuation array vm
as input and returns the object located at that position as output.

From a type-theoretical perspective, the valuation array v1 looks as follows:

v1t =


[o , o] ,
[ν , ν , ν , . . .] ,
[ι , ι , ι , ι , . . .] ,
...



10 Ivo Pezlar

where o, ν , ι represent types of truth values, natural numbers, and individuals, respec-
tively.16 But what about the variables |Ri|n themselves? What type do they belong to?
Tichý gives the following answer:

(cni) Let τ be any type of order n over B. Every variable ranging over τ is a
construction of order n over B. If X is of (i.e., belongs to) type τ then 0X, 1X,
and 2X are constructions of order n over B.
Let ∗n be the collection of constructions of order n over B. (Tichý (1988), p.
61)

Let types o, ν , ι from our example above constitute the type base B1. Then, by def-
inition 16.1.– 1.(t1i) (see Tichý (1988), p. 66) o, ν , ι are types of order 1. Further,
let us have variables |R1|1, |R2|1, |R3|1 that range over types o, ν , ι , respectively. By
definition 16.1.–2.(cni) above, they are constructions of order 1 and hence they all
belong to the same type ∗1.

Due to the dependency of variables on valuation arrays, Tichý describes them as
incomplete (or heteronomous) constructions (Tichý (1988), p. 60). In other words,
variables need some ‘external’ building material, in this case valuation arrays, to be
able to construct anything. This might sound odd at first, but remember that in TIL,
variables are not placeholders for values but general procedures for fetching them, so
it makes sense that they need some independent database to get their values from.

Also note that if we want to learn what type of objects variables are v-constructing,
we have to check not the type of the variables themselves, but the type of objects they
are typed to construct within the ramified type hierarchy (see Appendix 7). For ex-
ample, from the information given above, we can infer that variable |R2|1 is typed
to v-construct objects of type ν (the superscript ‘2’ points our attention to the sec-
ond row (R-sequence) of v1, which is the type of natural numbers), i.e., |R2|1/∗1 : ν ,
which can be read as “|R2|1 is a first-order construction (a variable) that is typed to
v-construct an object of type ν”. In other words, it is the parameter i in conjunction
with some specific valuation v that sets the range of the variable |Ri|n by pointing it
to a specific row of v, which represents some type.

In the rest of the paper, we will write variables |Ri|n, |Ri|n+1, . . . simply as x,y, . . .
to use a less cluttered notation.17

4 Type Variables

Recall that standard variables are restricted to objects of a certain type. For example, a
variable x : o is restricted to the type of truth values. In other words, standard variables
are locked to a single row in our valuation arrays and they v-construct only the objects
of this specific row. However, we want them to range not over objects but over types.

16 We obtain v1t from v1 by replacing objects in the array by their corresponding types, e.g., true is
replaced by o, etc.

17 Note that when we type a variable to a certain type (i.e., specify its range), we are essentially just
assigning a concrete number to i. If i = 1, then the variable at hand is typed to construct truth values o, if
i = 2, then it constructs natural numbers, etc.

Type Polymorphism, Natural Language Semantics, and TIL 11

Thus, type variables should, in a way, range over columns of vt as opposed to standard
variables that range over rows of v.

The definitions of variables and valuations presented above lead naturally to the
following definition of type variables:

Definition 3 (Type variable).
Let T be a collection of base types together with types of constructions and
function types generated inductively from them (see Definition 16.1. in Tichý
(1988)). By a T -sequence we shall understand any infinite sequence

(s’) t1, t2, t3, t4, . . .
(with or without repetitions) of members of T .
For any natural number n let |T |n be the (incomplete) construction which
consists in retrieving the n-th member of an T -sequence. Constructions of
this form will be called type variables.

Each valuation array v determines a T -sequence. It consists of the collection of types
to which the objects of v belong and these types are linearly ordered in the same way
as the rows of v to which they correspond are. For example, in the case of v1t the
T -sequence would be [o,ν , ι , . . .], since the first three rows of v correspond to types
of truth values, natural numbers, and individuals, respectively.18

Thus, the range of a type variable is the collection of all types of ramified type
theory of TIL (see Appendix 7) ordered in a T -sequence. For example, the type vari-
able |T 1| will v-construct the type o (i.e., the type represented by the first row of the
valuation-array v1t), |T 2| will v-construct ν , etc.

It is worth emphasizing that we can keep the original structure of valuation arrays
from Definition 2, we just need to adjust the ‘crawl’ mechanism accordingly to the
above explanation. We can do this as follows: first, we will search v1t that can be ob-
tained from the corresponding valuation array v1, then: type variable |T |n v-constructs
tn, i.e., the n-th type of the T -sequence occurring in vt .19 Hereinafter, we will write
type variables |T |n, |T |n+1, . . . simply as α,β , . . .

Once we start treating types as objects, we introduce a new type denoted Type
which is essentially the collection of all types. Thus, e.g., o/Type, ν/Type, . . . ,
∗1/Type, etc. Furthermore, note that this type of types is not part of our valuation
arrays, hence, we cannot have type variables ranging over it (it is not the case that
Type/Type).20

Now, let us return to our initial example, specifically to the analysis of the sen-
tence ‘Alice is thinking of something’, which we already attempted unsuccessfully
earlier. With type variables adopted, we could analyze it as follows:

λw : ω λ t : τ ∃α : Type[Thinkswt Alice α]

Note, however, that this analysis is not general enough. It can be interpreted as ‘Alice
is thinking of some type’, since α is a type variable only. But the original sentence

18 Thus, this T -sequence is essentially obtained by transposing v1t : from
[[o,o], [ν ,ν ,ν , . . .], [ι , ι , ι , . . .], . . .] we get [[o,ν , ι , . . .]].

19 Strictly speaking, we should be distinguishing between valuation and type valuation, but we conflate
them to simplify the presentation.

20 Of course, we could expand valuation arrays to accommodate even them.

12 Ivo Pezlar

was ‘Alice is thinking of something’, which means she might be considering ob-
jects of various types, not just various types. Hence, a more general analysis will
be necessary. Specifically, note that so far we have treated variables (ranging over
constructions and non-constructions) and type variables (ranging over types) sepa-
rately. Considering two different sorts of variables (valuations, etc.) can be, however,
restricting sometimes, as we have just seen above. Thus, in the next section, we intro-
duce a generalized notion of a variable that can range over objects belonging to any
type (including the construction types ∗n) and types as well.

5 Generalized Variables

So far, we have introduced i) standard variables ranging over constructions (and non-
constructions) and operating with valuation arrays v and ii) type variables ranging
over types and operating with type valuation arrays vt . It follows that if we want to
introduce variables that range over both constructions (and non-constructions) and
types, the associated valuation arrays will have to contain the information from both
arrays v and vt . This can be simply done by taking v and enriching it with the cor-
responding type information contained in vt . Note that since the types are constant
throughout the whole rows of vt (recall, e.g., v1t with the second row [ν , ν , ν , . . .]),
we do not need to incorporate the whole rows of vt into v, we just need to incorporate
their first elements, since they already carry all the type information we need. Thus,
valuation arrays for generalized variables will still be two-dimensional, but their first
element will now be the type of all the subsequent elements.

Definition 4 (Generalized Variable).
Let W be an arbitrary non-empty collection. By a W -array we shall under-
stand any infinite sequence:

[X0,X1,X2,X3,X4, . . .]

such that the first member X0 of the sequence is a type, while the other mem-
bers Xn, n > 0, are the entities belonging to the type X0.

Then, for any natural number n, let |W |n be the (incomplete) construction
that consists in retrieving the member Xn of the given W i-array, i.e., the el-
ement on the coordinates 〈i,n〉. The construction |W |n is a generalised vari-
able.21

Definition 5 (Generalized Valuation).
In a more general case we will need a two-dimensional array containing a
W i-array [X i

0,X
i
1,X

i
2,X

i
3,X

i
4, . . .] for each type. We shall call such arrays gen-

eralized valuations. Thus, where W 1,W 2,W 3,W 4, . . . is an enumeration of all

21 An earlier version of this paper contained a more complicated definition of a generalized variable and
I would like to thank an anonymous reviewer for suggesting a simplification.

Type Polymorphism, Natural Language Semantics, and TIL 13

the types, a generalized valuation is a two-dimensional array of the form:

V =


[
X1

0 , X1
1 , X1

2 , X1
3 , . . .

]
,[

X2
0 , X2

1 , X2
2 , X2

3 , . . .
]
,[

X3
0 , X3

1 , X3
2 , X3

3 , . . .
]
,[

X4
0 , X4

1 , X4
2 , X4

3 , . . .
]
,

...


Let V be this valuation. Relative to V , variable |W i|n constructs X i

n, i.e., the
n-th member of the W i-array occurring in V .

For example, let us have the following generalized toy valuation array V1:

V 1 =


[
o1

0 , true1
1 , f alse1

2
]
,[

ν2
0 , 12

1 , 22
2 , 32

3 , . . .
]
,[

ι3
0 , Alice3

1 , Bob3
2 , Cecil3

3 , Dana3
4 , . . .

]
,

...


Then, e.g., the variable |W 1|2 constructs through V1 as value f alse, but through |W 1|0
it constructs o, |W 3|1 constructs Alice, |W 3|0 constructs ι , etc.

To keep the notation simple, we will use the letters ‘x’, ‘y’, . . . for generalized
variables as well and it should always be clear from the context whether a standard
or generalized variable is used.

5.1 Extending Ramified Type Theory

We have already described the mechanism of generalized variables that v-construct
an object or a type to which the object belongs and their relation to expanded valua-
tions, which closely mirrors the rationale behind standard variables. Next, we extend
the definition of ramified type theory (see Appendix 7) to accommodate them accord-
ingly.

The extension of ramified type theory will involve an introduction of an additional
dimension to the ramification that will subsume the standard ramified type theory.22

This will allow us to have (generalized) variables that range over constructions (and
non-constructions) as well as over all the types of the ‘lower’ dimensions.

First, we briefly introduce the ramified type theory of TIL. The core of the rami-
fied type theory of TIL is its step-wise stratification of types by orders (for a proper
specification, see Appendix 7). We start with first-order types (types inhabited by
objects involving no constructions), then we define second-order types which are
inhabited by constructions, including variables ranging over first-order types. Natu-
rally, we can go further and introduce third-order types with constructions including
variables that v-construct objects belonging to second or first-order types, and so on.

For example, assume our first-order types are natural numbers ν and truth values
o. With these types, we can, e.g., form a new function type (oν) which is the type of
properties of natural numbers. As an example of a function of this type, consider the

22 A similar extension of ramified type theory was already briefly discussed in Dužı́ (1993).

14 Ivo Pezlar

function Prime that takes a natural number and returns true if it is a prime number and
f alse otherwise. Thus, e.g., the construction [Prime 3] constructs true and [Prime 4]
constructs f alse. Note that Prime is still an object of the first-order type.

Next, assume we introduce a variable x ranging over natural numbers, i.e., x : ν .
Now, we can form a construction [Prime x] which constructs true if the variable x gets
assigned a prime number, otherwise it constructs f alse. Since this object contains a
variable ranging over objects of the first-order type, it is an object of the second-order
type.23 Furthermore, we can introduce a variable y ranging over objects of the second-
order type. For example, assume a higher-order predicate HasVariable that takes a
construction of the second-order type and constructs true if it contains at least one
occurrence of a variable (free or bound) and f alse otherwise. Thus, [HasVariable y]
constructs f alse, if the variable y gets assigned the construction [Prime 3] and it
returns true if it gets assigned the construction [Prime x]. Note that in this case, the
variable y ranges over objects of the second-order type, hence it itself is an object
of the third-order types. Analogously, we could introduce even fourth-, fifth-, sixth-
order variables and so on.

Now, the limitation of ramified type theory in its current form is that it does not
regard types as proper objects, and, consequently, does not allow variables ranging
over types. However, this is exactly what we need to adequately analyze sentences
containing semantic polymorphism. As mentioned above, we extend the current ram-
ified type theory with a new dimension that will allow us to introduce generalized
variables that can range over both constructions (and non-constructions) and types.
We start with basic ramified type theory, whose objects (including types) will be as-
signed a new common type called kind, then we introduce variables ranging over all
objects of this supertype. Note that this modification mirrors the definition of rami-
fied type theory where we begin with simple type theory and then expand it. Now, we
start with ramified type theory and extend it.

Definition 6 (Extended Ramified Type Theory of TIL (eRTT)).
Let Type be a base, i.e., a set of types defined by ramified type theory (RTT).

(k1i) Every member of Type or an entity belonging to that member is a
kind of order 1 over Type, denoted as �1.

(Cki) Let A be any kind of order k over Type. Every generalized variable
ranging over A is a construction of kind of order k over Type. If X is
of (i.e., belongs to) kind A but is not itself a member of Type, i.e., it
is an entity belonging to some member of Type, then 0X , 1X , and 2X
are constructions of kind of order k over Type.

(Ckii) If 0 < m and X0,X1, . . . ,Xm are constructions of kind of order k, then
[X0 X1 . . . Xm] is a construction of kind of order k over Type. If 0 <
m, A is a kind of order k over Type, and Y as well as the distinct

23 Of course, as an anonymous reviewer remarked, the presence of variables is not necessary for form-
ing higher-order objects. For example, the other constructions [Prime 3] or [Prime 4] also belong to the
second-order type even though they do not contain variables ranging over objects of the first-order type.
They belong to the second-order type because they are constructions of order 1 that v-construct objects of
a type of order 1 (see Appendix 7, Def. 2). The same holds for constructions belonging to the third-order
type, etc. as well.

Type Polymorphism, Natural Language Semantics, and TIL 15

variables x1, . . . ,xm are constructions of kind of order k over Type,
then [λA x1 . . .xm Y] is a construction of kind of order k over Type.

(Ckiii) Nothing is a construction of kind of order k over Type unless it fol-
lows from (Cki) and (Ckii).

Let �k (k > 1) be the collection of generalized constructions of kind order
k over Type. The collection of kinds of order k+ 1 over Type is defined
as follows:

(Kk+1i) Every kind of order k, denoted �k (k ≥ 1), is a kind of order k+1.
(Kk+1ii) If 0 < m and A,B1, . . . ,Bm are kinds of order k+ 1 over Type, then

the collection (AB1 . . .Bm) of all m-ary (total and partial) mappings
from B1, . . . ,Bm to A is also a kind of order k+1 over Type.

(Kk+1iii) Nothing is a kind of order k + 1 over Type unless it follows from
(Kk+1i) and (Kk+1ii).

So, simply put, first-order kinds are types of objects involving no generalized
variables or constructions containing them. In other words, a kind of first-order is the
type of all members of Type or entities belonging to those members.24 For example,
Alice/ι , Alice/∗1, 0Alice/∗2, ι/Type are all first-order kinds, i.e., Alice,Alice,0Alice, ι/�1.
But, e.g., a generalized variable x ranging over objects of first-order kind has type �2,
i.e., x/�2 : �1.

Second-order kinds are types of objects containing generalized variables rang-
ing over first-order kinds and constructions containing such variables. Analogously,
we can have third-order kinds with variables ranging over objects of second-order
kind and so on. Furthermore, analogously to RTT’s cumulativity of types, we have
cumulativity of kinds, i.e., objects of kind �n are also objects of kind �n+1.

Extended ramified type theory gives us tools to properly analyze our motivating
examples containing instances of semantic polymorphism. As an example, let us try
to offer a more appropriate analysis of the simplified variant of (1):

(1’) Alice is thinking of something.

All we need to do to properly analyze (1’) is to use a generalized variable and adjust
the type of the involved function accordingly. The analysis we obtain is as follows:

λw : ω λ t : τ ∃x : �1[Thinkwt Alice x]

where Think constructs a function of type (oι�1)τω , Alice constructs an individ-
ual of type ι and variable x ranges over first-order kinds. Within eRTT, the whole
construction will receive the type �2 (i.e., second-order kind) because it contains a
generalized variable. For the corresponding type checking tree, see Fig. 2.25 Analyses
of (1), (2), (3), and (4) would proceed analogously.26

24 Note, however, that Type is not a proper object of eRTT, hence, e.g., a generalized variable x can
construct o, but not its type Type.

25 Recall that ‘∃x : α . . .’ is a notation shortcut for ‘[∃ λx : α[. . .]]’.
26 For more about a standard TIL-based analysis of notional attitudes such as seeking, finding, etc., see

section 5.2 Notional attitudes in Dužı́ et al. (2010).

16 Ivo Pezlar

((oτ)ω)

(oτ)

o

(o�1)

o

�1

x]]

ι

Alice

(oι�1)

τ

t]

((oι�1)τ)

ω

w]

(((oι�1)τ)ω)

[[[Think

(o(o�1))

[∃λ w : ω λ x : �1λ t : τ

Fig. 2 Type-checking tree

Remark 2 Note that we can now properly type even the inadequate analysis of (1’)
from earlier which corresponded rather to the sentence ‘Alice is thinking of some
type’. If we consider type variables only (no generalized variables), then we will
have the following types: T hinkT : (oιType)τω and α/�2 : Type. The analysis would
then be: λw : ω λ t : τ ∃α : Type[Thinkwt Alice α].

Of course, even this analysis is potentially insufficient. Since Alice can be think-
ing of anything, she might be thinking, e.g., of the type of all types, kinds, or eRTT
itself, etc., which our current analysis cannot cover since we have no variables that
could range over these types of objects, so we would have to introduce yet another
expansion of eRTT. In other words, it might always turn out that we need some larger
type or kind than we currently have. However, for the analysis of everyday natural
language phenomena the level of generality provided by eRTT seems to be more than
sufficient.

Remark 3 Some might argue that the role of generalized variables is too overloaded
and that we are trying to do too much with them.27 Wouldn’t it be better to keep
standard variables and type variables separate as is, e.g., common in polymorphic
lambda calculus? Of course, we could do that. We do not need to go all the way
towards generalized variables. We can just stop with the introduction of type vari-
ables from the previous section and be satisfied with that (assuming we appropriately
extend the definition of ramified type theory). However, recall that our goal was to
adequately analyze the sentence (1’). And for that purpose, considering separately
standard variables and type variables seem insufficient. In practice, it might turn out
that an implementation of generalized variables is indeed an overkill and thus their
adoption should be carefully considered, however, semantically speaking, they allow
us analyses otherwise unattainable.

27 This issue was raised by an anonymous reviewer.

Type Polymorphism, Natural Language Semantics, and TIL 17

6 Conclusion

In this paper, we have investigated the treatment of polymorphic functions in TIL,
which relies on type variables understood as syntactic placeholders. This approach,
however, carries certain disadvantages, most importantly it puts type variables outside
of semantic theory of TIL. In practice, this leads, e.g., to our inability to properly
analyse sentences involving non-specific notional attitudes such as ‘Alice is thinking
of something’, etc.

To alleviate these issues, we have proposed an alternative approach that treats
type variables as proper variables in the sense of TIL, i.e., as semantic objects that
can v-construct other objects. To address the issue of analysis of non-specific no-
tional attitudes we furthermore introduced generalized variables that act as both stan-
dard variables as well as type variables by ranging over both constructions (and non-
constructions) and types. This led to the introduction of generalized valuations arrays
and to the extended definition of ramified type theory which introduces new ‘large’
types called kinds.

7 Appendix

7.1 Constructions

The original definition of TIL constructions was given by Tichý (1988), here we
follow Dužı́ et al. (2010) (an alternative formulation can be found in Raclavský et al.
(2015)):

Definition 7 (Constructions).
1. The variable x is a construction that constructs an object O of the respec-

tive type dependently on a valuation. We say that it v-constructs O.
2. Where X is any object, 0X is the construction trivialization. It constructs

X without any change.
3. The composition [X0 X1 . . .Xm] is the following construction. If X v-constructs

a function f of type (αβ1 . . .βm) and X1 . . .Xm v-construct objects b1, . . . ,bm
of types β1, . . . ,βm, respectively, then the composition [X0 X1 . . .Xm] v-
constructs the value (an object of type α , if any) of f on the tuple-argument
〈b1, . . . ,bm〉. Otherwise, it is a v-improper construction, i.e., construction
that does not construct anything.

4. The closure [λx1 . . .xm Y] is the following construction. Let x1, . . .xm be
pairwise distinct variables v-constructing objects of types β1, . . . ,βm and
Y a construction v-constructing an object of type α . Then [λx1 . . .xm Y]
is the construction closure. It v-constructs the following function f of
type (αβ1 . . .βm): let 〈b1, . . . ,bm〉 be a tuple of objects of types β1 . . .βm,
respectively, and v′ be a valuation that associates xi with bi and is identical
to v otherwise. Then the value of function f on argument tuple 〈b1, . . . ,bm〉
is the object of type α v′-constructed by Y . If Y is v′-improper, then f is
undefined on 〈b1, . . . ,bm〉.

18 Ivo Pezlar

5. The single execution 1X is the construction that either v-constructs the
object v-constructed by X or, if X v-constructs nothing, is v-improper.

6. The double execution 2X is the following construction: let X be any object,
the double execution 2X is v-improper if X is a non-construction or if
X does not v-construct a construction or if X v-constructs a v-improper
construction. Otherwise, let X v-construct a construction X ′ and let X ′

v-construct and object X ′′, then 2K v-constructs X ′′.
7. Nothing other is a construction, unless it follows from 1–6.

7.2 Ramified Type Theory

We follow the specification from Tichý (1988):

Definition 8 (Ramified Type Theory of TIL).
Let B be a base, i.e., a set of atomic types.
1. (t1i) Every member of B is a type of order 1 over B.

(t1ii) If 0 < m and α,β1, . . . ,βm are types of order 1 over B, then the col-
lection (αβ1 . . .βm) of all m-ary (total and partial) mappings from
β1, . . . ,βm to α is also a type of order 1 over B.

(t1iii) Nothing is a type of order 1 over B unless it follows from (t1i) and
(t1ii).

2.(cki) Let α be any type of order k over B. Every variable ranging over α is
a construction of order k over B. If X is of (i.e., belongs to) type α ,
then 0X , 1X , and 2X are constructions of order k over B.

(ckii) If 0<m and X0,X1, . . . ,Xm are constructions of order k, then [X0 X1 . . . Xm]
is a construction of order k over B. If 0 < m, α is a type of order k
over B, and Y as well as the distinct variables x1, . . . ,xm are construc-
tions of order k over B, then [λα x1 . . .xm Y] is a construction of order
k over B.

(ckiii) Nothing is a construction of order k over B unless it follows from
(cki) and (ckii).

Let ∗k be the collection of constructions of order k over B. The collection
of types of order k+1 over B is defined as follows:

(tk+1i) ∗k and every type of order k is a type of order k+1.
(tk+1ii) If 0 < m and α,β1, . . . ,βm are types of order k+ 1 over B, then the

collection (αβ1 . . .βm) of all m-ary (total and partial) mappings from
β1, . . . ,βm to α is also a type of order k+1 over B.

(tk+1iii) Nothing is a type of order k+1 over B unless it follows from (tk+1i)
and (tk+1ii).

7.3 Types and Rules

In this paper, we have explored a semantic treatment of type variables in TIL. Al-
ternatively, we could attempt a syntactic rule-based analysis as well. However, since

Type Polymorphism, Natural Language Semantics, and TIL 19

this topic is outside the scope of the present paper, we sketch only the basics of this
approach. The key observation is that type variables generally appear in two kinds of
judgments in TIL literature:

C : ∗n→ σ(α)

X : σ(α)

which can be read as ‘a construction C belonging to a type ∗n is typed to v-construct
an object of type σ ’ and ‘a non-construction X belongs to a type α’, respectively,
where σ may contain α as a free type variable. For example:28

Cardinalityτ : (τ(oτ))
Cardinalityα : (τ(oα))
Trα : (∗nα)
X : ∗n→ ((ατ)ω)
z : ∗1→ α

Furthermore, note that these judgments are composed of three parts: a typed object
(i.e., either a construction C or a non-construction X), a typing relation ‘:’ and a
type term (i.e., either ∗n → σ(α) in case of constructions or σ(α) in case of non-
constructions).

Now, as we mentioned above, type terms might depend on some variable α of
type Type (the type of all types). We can explicitly capture this dependency by
abstracting type terms from α via λ abstractor and get λα : Type.∗n → σ(α) and
λα : Type.σ(α). Consequently, every free occurrence of α in σ becomes bound in
λα : Type.∗n→ σ(α) and λα : Type.σ(α). The obvious complement to abstraction
is, of course, application. Thus, the rules we obtain are as follows:29

α : Type `C : ∗n→ σ(α)
abs-C

C : ∗n→ λα : Type.σ(α)

C : ∗n→ λα : Type.σ(α) κ : Type
app-C

C : ∗n→ σ [κ/α]

α : Type ` X : σ(α)
abs-X

X : λα : Type.σ(α)

X : λα : Type.σ(α) κ : Type
app-X

X : σ [κ/α]

where σ [κ/α] is the result of substituting κ for all occurrences of α in σ .
Note that the premises of abs-C and abs-X rules are hypothetical judgments, i.e.,

judgments made in a certain context. Thus, we can read α : Type `C : ∗n→ σ(α) as
‘a judgment C : ∗n→ σ(α) is assertable given that we have some type term α of type
Type’. Analogously for the hypothetical judgment α : Type ` X : σ(α).

These rules can help us to explain syntactically the general process of instantia-
tion of type terms containing type variables to some specific type, a process which
was investigated semantically in this paper via the use of expanded valuation arrays.

Acknowledgements I would like to thank Prof. Marie Dužı́ and Prof. Jiřı́ Raclavský for their valuable
comments that helped to significantly improve this paper.

28 Examples taken from Dužı́ et al. (2010).
29 Note that in contrast to, e.g., second-order lambda calculus (Girard (1972), Reynolds (1974)), the

logic of construction-terms and type-terms remains separated.

20 Ivo Pezlar

References

Cardelli L, Wegner P (1985) On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys 17(4):471–523, DOI 10.1145/6041.6042

Chierchia G (1982) Nominalization and Montague Grammar: A semantics without
types for natural languages. Linguistics and Philosophy 5(3):303–354, DOI 10.
1007/BF00351458

Church A (1951) The Need for Abstract Entities in Semantic Analysis. Proceedings
of the American Academy of Arts and Sciences 80(1):100–112

Church A (1956) Introduction to Mathematical Logic. Princeton University Press,
Princeton

Dužı́ M (1993) Frege, notional attitudes, and the problem of polymorphism. In:
Stelzner M, Stelzner W (eds) Logik und Mathematik. Frege-Kolloquium Jena
1993, de Gruyter, Berlin, pp 314–323

Dužı́ M, Fait M (2019) Type Checking Algorithm for the TIL-Script Language. In:
Endrjukaite T, Dudko A, Jaakkola H, Thalheim B, Kiyoki Y, Yoshida N (eds) In-
formation Modelling and Knowledge Bases XXX, frontiers edn, IOS Press, Ams-
terdam, DOI 10.3233/978-1-61499-933-1-219

Dužı́ M, Horák A (2019) Hyperintensional Reasoning based on Natural Language
Knowledge Base. International Journal of Uncertainty, Fuzziness and Knowlege-
Based Systems URL http://arxiv.org/abs/1906.07562

Dužı́ M, Jespersen B, Materna P (2010) Procedural Semantics for Hyperintensional
Logic: Foundations and Applications of Transparent Intensional Logic. Logic,
Epistemology, and the Unity of Science, Springer, Dordrecht, DOI https://doi.org/
10.1007/978-90-481-8812-3

Fox C, Lappin S (2005) Foundations of Intensional Semantics. Blackwell
Girard JY (1972) Interprétation fonctionnelle et Élimination des coupure de

l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII
Kosterec M (2019) Substitution contradiction, its resolution and the Church-

Rosser Theorem in TIL. Journal of Philosophical Logic pp 1–13, DOI 10.1007/
s10992-019-09514-y

Moltmann F (2008) Intensional verbs and their intentional objects. Natural Language
Semantics 16(3):239–270, DOI 10.1007/s11050-008-9031-5

Moltmann F (2017) Cognitive Products and the Semantics of Attitude Verbs and De-
ontic Modals. In: Moltmann F, Textor M (eds) Act-Based Conceptions of Proposi-
tional Content, Oxford University Press, p 408

Pezlar I (2016) Investigations into Transparent Intensional Logic: A Rule-based
Approach. PhD thesis, Masaryk University, URL https://is.muni.cz/th/

hhhga/pezlar_phd_thesis.pdf

Pezlar I (2017) Algorithmic Theories of Problems. A Constructive and a Non-
Constructive Approach. Logic and Logical Philosophy 26(4):473–508, DOI https:
//doi.org/10.12775/LLP.2017.010

Pezlar I (2018) On Two Notions of Computation in Transparent Intensional Logic.
Axiomathes pp 1–17, DOI https://doi.org/10.1007/s10516-018-9401-7

Quine WVO (1956) Quantifiers and Propositional Attitudes. Journal of Philosophy
53(5):177–187, DOI 10.2307/2022451

http://arxiv.org/abs/1906.07562
https://is.muni.cz/th/hhhga/pezlar_phd_thesis.pdf
https://is.muni.cz/th/hhhga/pezlar_phd_thesis.pdf

Type Polymorphism, Natural Language Semantics, and TIL 21

Raclavský J (2020) Belief Attitudes, Fine-Grained Hyperintensionality and Type-
Theoretic Logic. College Publications, London

Raclavský J, Kuchyňka P, Pezlar I (2015) Transparentnı́ intenzionálnı́ logika jako
characteristica universalis a calculus ratiocinator. Brno: Masaryk University Press
(Munipress)

Reynolds JC (1974) Towards a Theory of Type Structure. In: Colloquium on Pro-
gramming, Paris, 9-11 April 1974, pp 1–18

Strachey C (2000) Fundamental Concepts in Programming Languages. Higher-Order
and Symbolic Computation 13(1/2):11–49, DOI 10.1023/A:1010000313106

Tichý P (1982) Foundations of partial type theory. Reports on Mathematical Logic
(14):59–72, DOI 10.1007/BF00370346

Tichý P (1988) The Foundations of Frege’s Logic. Foundations of Communication,
Berlin: de Gruyter

	Introduction
	Brief introduction to TIL
	Polymorphism in TIL
	Type Variables
	Generalized Variables
	Conclusion
	Appendix

