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Abstract. Proofs from assumptions are amongst the most fundamen-
tal reasoning techniques. Yet the precise nature of assumptions is still
an open topic. One of the most prominent conceptions is the placeholder
view of assumptions generally associated with natural deduction for intu-
itionistic propositional logic. It views assumptions essentially as holes in
proofs (either to be filled with closed proofs of the corresponding propo-
sitions via substitution or withdrawn as a side effect of some rule), thus
in effect making them an auxiliary notion subservient to proper proposi-
tions. The Curry-Howard correspondence is typically viewed as a formal
counterpart of this conception. In this talk, based on my paper of the
same name (Synthese, 2020), I will argue against this position and show
that even though the Curry-Howard correspondence typically accommo-
dates the placeholder view of assumptions, it is rather a matter of choice,
not a necessity, and that another more assumption-friendly view can be
adopted.
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1 Introduction

Proofs from assumptions are amongst the most fundamental reasoning tech-
niques. Yet the precise nature of assumptions is still an open topic. One of the
most prominent conceptions is the placeholder view of assumptions generally
associated with natural deduction for intuitionistic propositional logic. It views
assumptions essentially as holes in proofs (either to be filled with closed proofs
of the corresponding propositions via substitution or withdrawn as a side effect
of some rule), thus in effect making them an auxiliary notion subservient to
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proper propositions (see, e.g., [15], p. 5). The Curry-Howard correspondence is
typically viewed as a formal counterpart of this conception (recently, see, e.g.,
[13]). I this talk, based on my paper [8], I will argue against this position and
show that even though the Curry-Howard correspondence typically accommo-
dates the placeholder view of assumptions, it is rather a matter of choice, not a
necessity, and that another more assumption-friendly view can be adopted.

Assumption withdrawing. The rule for implication introduction from natural de-
duction for intuitionistic propositional logic is arguably the best-known example
of the assumption withdrawing rule:

[A]
...

B
A ⊃ B

It prescribes the following inference step: if we can derive B from assumption
A, then we can derive A ⊃ B and withdraw the initial assumption A (it is
worth noting that other assumptions than A may be used in deriving B and
those remain open after discharging A). Note that this rule effectively embodies
the deduction theorem from standard axiomatic systems. In other words, the
implication introduction rule is internalizing structural information from the
proof level (“B is derivable from A”) to the propositional level (“A implies
B”).1

The problematic aspect of this and other assumption withdrawing rules stems
from the fact that it behaves differently from the non-assumption withdrawing
rules. More specifically, with the implication introduction rule we are deriving
the proposition A ⊃ B not from other propositions as with other standard
rules (e.g., conjunction introduction), but from a hypothetical proof. To put it
differently, the inference step validated by the implication introduction takes
us from a derivation starting with a hypothesis to a proposition, not just from
propositions to another proposition as do rules without assumptions.2

For example, consider the following simple proof of the theorem A ⊃ ((A ⊃
B) ⊃ B) of propositional logic:

[A ⊃ B]1 [A]2
⊃E

B ⊃I1
(A ⊃ B) ⊃ B

⊃I2
A ⊃ ((A ⊃ B) ⊃ B)

1 [13] describes this as a two-layer system. Note that, strictly speaking, the assump-
tions are not really withdrawn, they are rather incorporated into the propositional
level in the form of an antecedent.

2 This non-standard behaviour is also the reason why [10] describes assumption with-
drawing rules as improper rules and introduces the distinction between inference
rules and deductions rules. For more, see [10], [7].
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We start by making two assumptions A ⊃ B and A. Applying the implication
elimination rule (modus ponens) we derive B. What follows are two consecutive
applications of implication introduction rule, first withdrawing the assumption
A ⊃ B, the second withdrawing the assumption A. Note that it is the fact that
B is derivable from A ⊃ B together with A that warrants the application of the
implication introduction rule and the derivation of the corresponding proposition
(A ⊃ B) ⊃ B, at that moment still depending on the assumption A. Analogously
with the second application of the implication introduction rule that withdraws
this remaining assumption.

A proof that relies on no assumptions is called a closed proof. If a proof
depends on some assumptions that are yet to be withdrawn (i.e., open/active
assumptions) it is called an open proof. For example, our derivation of A ⊃ ((A ⊃
B) ⊃ B) constitutes a closed proof, since both assumption were withdrawn in
the course of the derivation. Assuming we would not have carried out the last
inference step, we would get an open proof:

[A ⊃ B]1 A
⊃E

B ⊃I1
(A ⊃ B) ⊃ B

since the assumption A, upon which the derivation of ((A ⊃ B) ⊃ B) depends,
is still active.

Closed proofs are usually preferred to open ones for the simple reason that
closed proofs are generally viewed as the fundamental notion in standard proof-
theoretic systems. From this perspective, assumptions are just temporary holes
in the proof that are preventing us from reaching a closed proof. These open holes
can be are either completely discarded via assumption withdrawing rules or filled
in with other already closed proofs via substitution. This is the reason why [13]
and others3 call this the placeholder view of assumptions: active assumptions
are just auxiliary artefacts of the employed proof system that behave differently
than proper propositions, i.e., propositions that do not appear as assumptions.

The Curry-Howard correspondence. The placeholder view of assumptions is also
supported to a large extent by the Curry-Howard correspondence in its basic
form which links typed lambda calculus and implicational fragment of intuition-
istic propositional logic.4 Under this correspondence, natural deduction assump-
tions correspond to free variables of lambda calculus, which fits well with the
interpretation of assumptions as open holes in the proof.

For example, assuming only the implicational fragment of intuitionistic propo-
sitional natural deduction, we get the following correspondences between the
propositional and functional dimensions of the Curry-Howard correspondence:

3 See, e.g., [1]
4 See, e.g., [14].
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Natural Deduction Lambda Calculus
assumption free variable

implication introduction function abstraction
implication elimination function application

Under this correspondence, the implication introduction rule will then look as
follows:

[x : A]
...

b(x) : B

λx.b(x) : A ⊃ B

Note that the act of withdrawing the assumption A corresponds to λ-binding of
the free variable x. The whole proof of the theorem A ⊃ ((A ⊃ B) ⊃ B) would
then proceed in the following way:

[x : A ⊃ B]1 [y : A]2
⊃E

xy : B
⊃I1

λx.xy : (A ⊃ B) ⊃ B
⊃I2

λy.λx.xy : A ⊃ ((A ⊃ B) ⊃ B)

with the concluding proof object (closed term) λy.λx.xy with no free variables
representing the final closed proof with no active assumptions. In contrast, the
open proof discussed earlier:

[x : A ⊃ B]1 y : A
⊃E

xy : B
⊃I1

λx.xy : (A ⊃ B) ⊃ B

concludes with the proof object λx.xy that still contains the free variable y
corresponding to the yet to be withdrawn assumption A.

The placeholder view of assumptions and consequence statements. The Curry-
Howard correspondence is generally viewed as incorporating the placeholder view
of assumptions. Probably most recently, this point was explicitly made in [13].
Furthermore, in the same paper Schroeder-Heister advocates for a more general
concept of inference that takes us not from propositions to other propositions,
but from (inferential) consequence statements A |= B to other consequence
statements in order to, amongst other things, equalize the status of assumptions
and assertions.5 The general form of inference rules he discusses is the following:

5 Strictly speaking, we should be writing A |=D B, i.e., that A |= B can be derived
with respect to a set of definitional clauses D (see [12]), but for simplicity we omit
these considerations.



The placeholder view of assumptions 5

A1 |= B1 . . . An |= Bn

C |= D

where the antecedents can be empty and its correctness means that whenever
A1 |= B1, . . . , An |= Bn, then C |= D. As Schroeder-Heister explains:

This corresponds to the idea that in natural deduction, derivations can depend
on assumptions. Here this dependency is expressed by non-empty antecedents,
as is the procedure of the sequent calculus. Our model of inference is the
sequent-calculus model. . . ([12], p. 938)

To show that this rule is correct, we have demonstrated that given the grounds
for the premises (denoted as g : A |= B) we can construct grounds for the
conclusion. In other words, the grounds of the conclusion have to contain some
operation f transforming the grounds for the premises to the grounds for the
conclusion. Schematically:

g1 : A1 |= B1 . . . gn : An |= Bn

f(g1, . . . gn) : C |= D

Schroeder-Heister comments on this rule as follows:

. . . [H]andling of grounds in the sense described is different from that of terms
in the typed lambda calculus. When generating grounds from grounds accord-
ing to [the rule immediately above], we consider grounds for whole sequents,
whereas in the typed lambda calculus terms representing such grounds are
handled within sequents. So the notation g : A |= B we used above, which
is understood as g : (A |= B), differs from the lambda calculus notation
x : A ` t : B, where t represents a proof of B from A and the declaration x : A
on the left side represents the assumption A. ([12], p. 939)

However, it should be mentioned that he left it “open how to formalize grounds
and their handling.” (ibid., p. 938) I will argue that even though lambda calcu-
lus with the Curry-Howard interpretation can be seen as embodying the place-
holder view of assumptions in the intuitionistic propositional logic, within the
family of Curry-Howard correspondence based systems we can consider a gen-
eralized approach that is free of this view. This generalized approach will treat
consequence statements A |= B as higher-order functions A ⇒ B that can be
naturally captured in Martin-Löf’s constructive type theory ([4]), specifically in
its higher-order presentation (see [5], [6]).

Function-based approach to assumptions. Let us return to the implication in-
troduction rule. Adopting the sequent-style notation for natural deduction,6 we
can rewrite this rule as follows:

x : A ` b(x) : B

` λx.b(x) : A ⊃ B
6 See, e.g., Gentzen’s system NLK, discussed in [9].
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where the symbol ` is used to separate assumptions from (derived) propositions.
Notice that the derivation of B from A is coded with an abstraction term from

lambda calculus, which means it captures some sort of a function. Reasoning
backwards, this should mean that between the assumption (context) and the
conclusion (asserted proposition) has to be a relationship that can be understood
functionally, otherwise, we would have nothing to code via lambda terms. To put
it differently, there has to be some more fundamental notion of a function at play
that we are coding through the concrete abstraction term.

We can try to capture this observation via the following rule:

x : A ` b(x) : B

f : A⇒ B

where f is to be understood as exemplifying the more fundamental notion of a
function that takes us from A to B.

Note that this rule can be roughly understood as the opposite of the impli-
cation introduction rule that goes in the other direction: while the implication
introduction rule makes the hypothetical derivation “from A is derivable B” in
its premise more concrete in the form of implication proposition A ⊃ B and the
corresponding lambda term λx.b(x), this rule makes the derivation more general
in the sense that it is now considered as a function f (not specifically a lambda
term) from A to B. Also notice that assumptions are no longer placeholders or
contexts, but types of arguments for the function f capturing the corresponding
derivation. In other words, assumptions now stand equal to proper propositions,
they are not just an auxiliary notion captured via free variables.

Furthermore, capturing derivations in this way allows us to consider grounds
for the whole consequence statements as Schroeder-Heister required, not just
grounds for the conclusions under some assumptions. More specifically, treating
consequence statement A |= B as a function type A ⇒ B (in accord with the
Curry-Howard correspondence) and a ground g as an object f of this type, we
can reformulate the general rule as follows (see [12], p. 938):

g1 : A1 ⇒ B1 . . . gn : An ⇒ Bn

f(g1, . . . gn) : C ⇒ D

Formalization. So far, I have treated f : A ⇒ B informally to mean “f is a
function from A to B”. Utilizing Martin-Löf’s constructive type theory ([4]),
specifically its higher-order presentation ([5], [6]), we can capture it more rigor-
ously as a higher-order judgment of the form (x)b : (A)B. To explain why, let
us return to the hypothetical judgment x : A ` b(x) : B that appears as the sole
premise of the implication introduction rule. It tells us that we know b(a) to be a
proof of the proposition B assuming we know a to be a proof of the proposition
A. In other words, the hypothetical judgment x : A ` b(x) : B can be seen as
stating that b(x) is a function with domain A and range B.7 This fact, how-
ever, cannot be stated directly in the lower-order presentation of constructive

7 See [4].
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type theory. Thus we move towards the higher-order presentation, which is as a
generalization of the lower-order presentation using a more primitive notion of
a type. The higher-order variant of constructive type theory allows us to form a
higher-order notion of a function which can be used to capture the function hid-
den behind the hypothetical judgment x : A ` b(x) : B as an object (x)b of type
(A)B. Consequently, (x)b : (A)B can then be used to interpret our statement
f : A ⇒ B, as was required. In other words, (x)b : (A)B can be understood as
a higher-order judgment declaring that we have (potentially open) derivation of
B from A captured by the function (x)b.

It is important to emphasize that the higher-order function type (A)B cannot
be conflated with the lower-order function type A ⊃ B. The most basic reason
is that they are inhabited by different objects: the former by functions, the
latter by elements specified by ⊃-introduction rule, i.e., objects of the form
λx.b(x) that are used to code functions. More generally, the notion of a function
behind the type A ⊃ B is parasitic on a more fundamental notion of a function
behind the type (A)B.8 From the logical point of view, the main reason we
should avoid merging (A)B and A ⊃ B is that A in (A)B is an assumption of
derivation, while A in A ⊃ B is an antecedent of implication, hence they are
objects of different inferential roles. This is perhaps best illustrated by the fact
that assuming some function f of type (A)B essentially corresponds to assuming

a rule
A
B

in Schroeder-Heister’s natural deduction with higher-level rules ([11]).

Conclusion. In this talk, I have argued that the Curry-Howard correspondence
is not necessarily connected with the placeholder view of assumptions generally
associated with natural deduction systems for intuitionistic propositional logic.
Although in the basic form of this correspondence, assumptions, which corre-
spond to free variables, can indeed be thought of as just holes to be filled, we
can consider also a functional approach where derivations from assumptions are
regarded as functions (see [8]). On this account, assumptions are no longer just
placeholders but domains of the corresponding functions. From the logical point
of view, this move corresponds to the shift from reasoning with propositions to
reasoning with consequence statements.
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4. Martin-Löf, P.: Intuitionistic type theory: Notes by Giovanni Sambin of a series of
lectures given in Padua, June 1980. Bibliopolis, Napoli (1984)

8 See [2], [3].

https://doi.org/10.1007/978-3-030-15655-8{_}12


8 I. Pezlar

5. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s type
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