
Composition of Deductions within
the Propositions-As-Types Paradigm

Ivo Pezlar

Abstract. Kosta Došen argued in his papers Inferential Semantics ([7])
and On the Paths of Categories ([8]) that the propositions-as-types par-
adigm is less suited for general proof theory because – unlike proof
theory based on category theory – it emphasizes categorical proofs over
hypothetical inferences. One specific instance of this, Došen points out,
is that the Curry-Howard isomorphism makes the associativity of de-
duction composition invisible. We will show that this is not necessarily
the case.

Mathematics Subject Classification (2010). Primary 03F03; Secondary
03B40, 03B15.

Keywords. general proof theory, propositions as types, Curry-Howard
isomorphism, constructive type theory, categorial proof theory, cut rule,
composition of deduction.

1. Introduction and Motivation

Kosta Došen argued in his papers Inferential Semantics ([7]) and On the
Paths of Categories ([8]) that the propositions-as-types paradigm (see, e.g.,
[32]) based on the Curry-Howard isomorphism is less suited for general proof
theory because – unlike proof theory based on category theory – it makes
prominent categorical proofs over hypothetical inferences. One specific in-
stance of this, Došen points out, is that the Curry-Howard isomorphism
makes the associativity of deduction composition invisible. This is surpris-
ing, because both approaches are known to be equivalent (see [14], [15]). We
will examine Došen’s claims and argue that approaches based on the Curry-
Howard isomorphism do not necessarily favor proofs over inferences and that
the associativity of deduction composition does not need to become hidden.

This paper is structured as follows: first, we will briefly introduce notions
relevant to our investigation (Section 2), then we will examine Došen’s main

Work on this paper was supported by grant no. 19-12420S from the Czech Science Foun-

dation, GA ČR.

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Logica Universalis.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
This is the author’s accepted manuscript (AAM) of an article published in Synthese.The final authenticated version is available online at:

Ivo Pezlar
Typewriter
https://doi.org/10.1007/s11229-020-02706-z

Ivo Pezlar
Typewriter
https://doi.org/10.1007/s11787-020-00260-3

2 Ivo Pezlar

argument and offer a counterproposal on how to deal with the composition
of deductions within the propositions-as-types paradigm while keeping the
associativity visible (Section 3).

2. Preliminary Notes

We start with a short overview of the key vocabulary of this paper:
General proof theory. An approach to proof theory proposed by [26]

that views proofs themselves as the primary object of study. Proofs are no
longer seen as just a formal device for studying logical consequence but as a
subject matter worthy of its own philosophical investigation. See also [13].

Propositions-as-types paradigm. A family of approaches based on the
Brouwer-Heyting-Kolmogorov (BHK) interpretation of logical connectives
and on the identification of propositions and types, also known as the Curry-
Howard isomorphism or correspondence, initially observed by [4] and [10].1

In its simplest form, it refers to the correspondence between the implica-
tional fragment of intuitionistic natural deduction and typed λ-calculus: rule
of assumption, implication introduction (deduction theorem), and implica-
tion elimination (modus ponens) on the logical side become, respectively,
free variable, abstraction, and application on the functional (computational)
side. Propositions are considered collections (types) of their proofs, prov-
ing a proposition then becomes equivalent to constructing an object of a
certain type, and simplification of proofs corresponds to the evaluation of
programs. For example, the implication introduction rule decorated with the
corresponding λ-terms (also known as proof objects) will look as follows:

x : A ` b(x) : B
⊃I

λx.b(x) : A ⊃ B
where λx.b(x) is the abstraction binding the variable x in b(x). In accordance
with the propositions-as-types principle, we can read it as either i) if we can
construct proof b(x) of proposition B with the assumption that we have a
proof x of A, then we can construct a new proof λx.b(x) of A ⊃ B that
depends on no assumptions, or ii) a λ-term λx.b(x) of type A ⊃ B codes a
function that takes an object x of type A and transforms it into an object
b(x) of type B (in compliance with the BHK interpretation).

Categorial proof theory. An approach to proof theory based on cate-
gory theory utilizing the equivalence between typed λ-calculus and Cartesian
closed categories found by [14], [15]. The objects of these categories are inter-
preted as propositions/types and morphisms as terms/proofs. As a specific
example, f : A → B can be understood as stating that the morphism term
f codes the deduction from proposition A (premise) to proposition B (con-
clusion). See also [5], [6]. For example, from the categorial perspective the
implication introduction rule will look as follows:

1There were, however, other crucial contributors as well, most importantly N. G. de Bruijn
and Per Martin-Löf.

Composition of Deductions 3

h : > ∧A → B
h′ : > → A ⊃ B

where > is a terminal object that behaves like the constant true proposition.
Composition of deductions. The process of splicing together two proofs,

where the first ends with a conclusion that is used as an assumption in the
other. In other words, it is a cut rule, i.e., a procedure for eliminating auxiliary
lemmas from a proof by replacing their occurrences with their proofs. In
categorial proof theory, this process is captured via the notion of morphism
composition as specified by the following rule (the symbol ◦ denotes the
binary operation of composition):

f : A→ B g : B → C
CompMorph

g ◦ f : A→ C
read as “if we can deduce B from A and C from B, then C can be directly de-
duced from A” (see, e.g., [8]). In the propositions-as-types paradigm, this rule
can be captured via the notion of substitution as specified by the following
rule:

Γ ` a : A x : A,∆ ` b : B
subND

Γ,∆ ` b[a/x] : B
read as “if we can deduce A and also B under the assumption A, then we
can substitute the proof of A for the assumption A used in the other proof”
(see, e.g., [20]). As a concrete example of deduction composition, consider
the following derivation:

Γ ` A ∧B A ∧B ` B
Γ ` B

First, we deduced A ∧ B from the assumptions Γ, then we used the same
proposition as a further assumption to derive B. Following the general prin-
ciples of deduction composition, we can see that proposition A ∧ B plays
the role of a “grafting” lemma that can be removed in order to join these
two proofs. If we do so, we get the deduction B directly from the initial
assumptions Γ.

Associativity of deduction composition. This notion captures the idea
that the order in which we carry out deduction compositions should not
matter, i.e., that we should reach the same conclusion (= permutation of
cut). Assuming categorial proof theory in the background, consider, e.g., the
following two derivations:

f : A→ B g : B → C

g ◦ f : A→ C h : C → D

h ◦ (g ◦ f) : A→ D

f : A→ B

g : B → C h : C → D

h ◦ g : B → D

(h ◦ g) ◦ f : A→ D
Whether we first compose f with g and then with h or we start by composing
g with h and then with f does not affect the outcome, and in both cases we
derive the proposition A→ D. Thus we can conclude that associativity holds,
i.e., h ◦ (g ◦ f) = (h ◦ g) ◦ f .

4 Ivo Pezlar

3. Došen’s Argument

As mentioned in the previous section, in [7] and [8] it is argued that categorial
proof theory is more suited for general proof theory than the propositions-as-
types paradigm because it prioritizes inferences (deductions)2 over categorical
proofs.3 Specifically, Došen writes:

The typed lambda coding of the Curry-Howard correspondence [. . .]
and the categorial coding in Cartesian closed categories are equivalent
in a very precise sense. [. . .] The import of the two formalisms is how-
ever not exactly the same. The typed lambda calculus suggests some-
thing different about the subject matter than category theory. It makes
prominent the proofs t : B—and we think immediately of the categorical
ones, without hypotheses—while category theory is about the inferences
f : A ` B. [It is a] code for a derivation that starts with premise A
and ends with conclusion B [and] allow[s] hypotheses to be as visible
as conclusions. [The propositions-as-types paradigm] makes conclusions
prominent, while hypotheses are veiled. Conclusions are clearly there
to be seen as types of terms, while hypotheses are hidden as types of
free variables, which are cumbersome to write always explicitly when
the variables occur as proper subterms of terms. The desirable terms
are closed terms, which code derivations where all the hypotheses have
been cancelled. [7]

One of the side-effects of this preference, Došen argues, is that the associa-
tivity of deduction composition gets lost:

[I]n the Curry-Howard correspondence, one designates deductions by
typed lambda terms, which is congenial with understanding proofs in
the categorical, and not the hypothetical, i.e. categorial, way [. . .], then
composition of deductions is represented by substitution. With that, the
associativity of composition becomes invisible, unless one introduces, as
it is sometimes done, an explicit substitution operator. [8]

To summarize, Došen raises several concerns about the propositions-as-
types paradigm:

1. it is about proofs, not deductions;
2. terms code deductions;
3. desirable terms are closed terms;
4. hypotheses are veiled and cumbersome;
5. associativity of deduction composition is invisible (without an explicit

substitution operator).

We will argue against these points and show that adoption of the propositions-
as-types paradigm does not commit us to the points above.

3.1. Proofs and Deductions

Došen in [7] states that the Curry-Howard isomorphism emphasizes proofs,
while categorial proof theory is about deductions. Although this statement

2Došen uses them interchangeably; see e.g., [7], p. 149.
3In compliance with the rejection of Schroeder-Heister’s first dogma of standard semantics
(the priority of categorical over the hypothetical, see [29]).

Composition of Deductions 5

is not incorrect, it is slightly misleading. Systems built around the Curry-
Howard isomorphism are a great deal about deductions as well; they just
have a different name for them: hypothetical judgments. Take, e.g., construc-
tive/intuitionistic type theory developed by Martin-Löf (CTT; [19]), which
can be regarded as a flagship system of the propositions-as-types paradigm.
Now, let us consider its rule for implication introduction:4

x : A

b(x) : B
⊃-intro

λx.b(x) : A ⊃ B

where the deduction premise:5

x : A

b(x) : B

is nothing other than a hypothetical judgment, i.e., a judgment with a con-
text, that can be also written as x : A ` b(x) : B. Thus, in CTT, deductions
of the form “from A we deduce B” are properly captured as hypothetical
judgments, not as lambda terms. The general relationship between ` and ⊃,
when A and B are considered as propositions, can be schematized as follows:

x : A ` b(x) : B︸ ︷︷ ︸
hypothetical judgment, sequent, deduction

 λx.b(x) : A ⊃ B︸ ︷︷ ︸
categorical judgment, formula, proof︸ ︷︷ ︸

“deduction theorem”

Broadly put, hypothetical judgments carry structural information (similarly
to Gentzen’s sequents), while the corresponding categorical judgments con-
vey logical information. Furthermore, note that this reduction (“deduction
theorem”) is not completely faithful. We both gain and lose something from
it. What we get is the ability to internalize and express the consequence re-
lation in the form of an implication proposition/type (logical information).
What we lose, however, is the dependency feature (structural information).

Remark 3.1. Hypothetical judgments x : A ` b(x) : B could also be under-
stood as consequence statements declaring thatB follows (proof-theoretically)
from A (see [29]) or as function types A⇒ B (see [24]).

Remark 3.2. Hypothetical judgments and conditional judgments (= asser-
tions of implications) should not be conflated. From the CTT perspective, a
conditional judgment corresponds to the assertion that a proposition A ⊃ B
is true (i.e., the categorical judgment a : A ⊃ B), which is something dif-
ferent than the assertion that B is true assuming that A is true (i.e., the
hypothetical judgment x : A ` b(x) : B).

4In CTT, A ⊃ B is defined via the Π type, i.e., the type of dependent functions, specifically

as (Πx : A)B where B does not depend on x.
5See [25], [23].

6 Ivo Pezlar

3.2. Terms as Codes for Deductions

Došen in [8] claims that within the propositions-as-types paradigm terms
code deductions. However, as shown in the previous section, this is imprecise.
The most natural way to represent deductions in this paradigm is to use
hypothetical judgments of the form x : A ` b(x) : B, not just lambda terms.
Hence, when considering a rule for composing deductions, we should not think
of categorical proofs (as Došen probably did, judging by his remarks), but of
hypothetical judgments.

3.3. Desirability of Closed Terms

Došen in [7] asserts that within the propositions-as-types paradigm the desir-
able terms are closed terms, i.e., categorical proofs captured via categorical
judgments.

It is true that in systems utilizing this correspondence categorical no-
tions are, conceptually and in terms of explanation, prior to hypothetical
ones. For example, in CTT, we start with categorical judgments of the gen-
eral form a : A (read as “a is an object of type A”) and generalize them
into hypothetical judgments of the form x : A ` b(x) : B (read as “b(x) is
an object of type B, assuming x is an object of type A”), i.e., judgments
depending on some assumptions, while the meaning of the latter is explained
with respect to the former:

Categorical judgments are conceptually prior to hypothetical judgments
[. . .] It holds in general that the meaning explanation of hypothetical
judgments is thus reduced to the meaning explanation of categorical
judgments. [27]

However, that does not mean that hypothetical notions are not key in CTT:

[H]ypothetical judgments are fundamental to the theory. It is, for in-
stance, hypothetical judgments that give rise to the various dependency
structures in constructive type theory, by virtue of which it is a depen-
dent type theory. [27]

Thus, although hypothetical judgments are a secondary notion in terms of
meaning explanations, by no means are they dispensable or less desirable
than categorical judgments. For example, it was dependent types (specifically,
dependent function and sum types) introduced with the help of hypothetical
judgments that enabled the extension of constructive type theory towards
predicate logic.

Remark 3.3. The general attitude towards hypothetical notions is that they
are reducible to categorical ones. This approach,6 popularized by [33] and
especially [1], slowly became the standard in both classical and intuitionis-
tic logic and prevails to this day.7 Of course, not everybody agreed with this

6It is difficult to surmise who was the first to suggest this reduction, however, it appears
as early as the 17th century in the book Artis Logicae Compendium by Henry Aldrich

(1648–1710) and the general idea was around probably even earlier.
7See [29].

Composition of Deductions 7

endeavour. For example, Frege (1881)8 in [9] criticized Boole for this and sug-
gested a reverse direction, i.e., reducing categoricals to hypotheticals, or more
precisely, reducing Boole’s primary propositions into secondary propositions,
which included hypotheticals as well.

Remark 3.4. In The Concept of Mind Gilbert Ryle wrote:

Like most dichotomies, the logicians’ dichotomy “either categorical or
hypothetical” needs to be taken with a pinch of salt. [. . .] Save to those
who are spellbound by dichotomies, there is nothing scandalous in the
notion that a statement may be in some respects like statements of brute
fact and in other respects like inference-licences. . . [28]

Although we do not fully share Ryle’s sentiments regarding the nature of the
distinction between hypotheticals and categoricals, note that in our case, the
“statement of brute [logical] fact” corresponds to λx.b(x) : A ⊃ B, while the
“statement of inference-licence” coincides with x : A ` b(x) : B since it is a
premise of an inference rule.

3.4. Veiled Hypotheses

Došen in [7] argues that within the propositions-as-types paradigm conclu-
sions are prominent, while hypotheses are veiled, i.e., hidden as types of free
variables, which are cumbersome to write explicitly. However, as we already
demonstrated above, this is also inaccurate. When we represent deductions
via hypothetical judgments such as x : A ` b(x) : B, the conclusion b(x) : B
is no more prominent than the hypothesis x : A.9 It is neither veiled nor
cumbersome; it is a constitutive part of a hypothetical judgment. Of course,
sometimes we might choose to omit contexts to gain more readibility, but
that could be hardly counted against the system as such.

3.5. Associativity of Deduction Composition

Došen in [8] states that the associativity of deduction within the propositions-
as-types paradigm becomes invisible unless an explicit substitution operator
is introduced. We will argue that this is not necessarily the case. First, we
reexamine the loss of associativity within the propositions-as-types paradigm
and then we propose a way around it.

Suppose we have the following two derivations (3.1) and (3.2) in stan-
dard natural deduction, which we want to analyze within the propositions-
as-types paradigm while keeping the associativity visible.

A ∧B ` A ∧B A ∧B ` A
A ∧B ` A A ` A ∨B

A ∧B ` A ∨B
(3.1)

A ∧B ` A ∧B
A ∧B ` A A ` A ∨B

A ∧B ` A ∨B
A ∧B ` A ∨B

(3.2)

8Frege’s unpublished manuscript Boole’s Logical Calculus and the Concept-Script.
9It is rather the other way around since the conclusion b(x) : B clearly displays its depen-
dence on the variable x from the hypothesis.

8 Ivo Pezlar

Assuming CTT once again as the background theory, we can capture these
proofs via the following derivations (3.3) and (3.4) (composing via substitu-
tion rule for ND, see above):

c : A ∧B ` c : A ∧B x : A ∧B ` fst(x) : A

c : A ∧B ` fst(c) : A d : A ` inl(d) : A ∨B
c : A ∧B ` inl(fst(c)) : A ∨B

(3.3)

c : A ∧B ` c : A ∧B
x : A ∧B ` fst(x) : A d : A ` inl(d) : A ∨B

c : A ∧B ` inl(fst(x)) : A ∨B
c : A ∧B ` inl(fst(c)) : A ∨B

(3.4)

Clearly, we have reached the same conclusion despite changing the order of
compositions; however, note that the corresponding concluding proof objects
inl(fst(c)) and inl(fst(c)) do not reflect this since they are identical.

The most straightforward way to record this kind of information is via
the notion of associativity. However, associativity is a property of binary op-
erators and, as of now, we have none. Thus, our first task will be to introduce
a composition operator for deductions (i.e., hypothetical judgments) in CTT.

As already mentioned above, the categorial representation for deduction
f : A→ B corresponds in CTT to the hypothetical judgment x : A ` b(x) : B
and composition of morphisms CompMorph roughly corresponds to the substi-
tution of terms for free variables in CTT.10 With these pieces of information,
we can then put together the following rule for deduction composition in
CTT (assuming A, B, and C are propositions):

x : A ` b(x) : B y : B ` c(y) : C
CompDed

x : A ` c(b(x)) : C

which can be read as: “assuming that B can be derived from A and that C
can be derived from B, then C can be derived from A”.

Now, we have a rule for composition, but we are still missing the cor-
responding composition operator. Let us inspect the way hypothetical judg-
ments are composed in the CompDed rule, especially the concluding proof ob-
ject c(b(x)) (i.e., the result of the substitution c[b/y]). Looking at c(b(x)), we
should be immediately reminded of the standard function composition, which
is defined as a consecutive function application, i.e., (g ◦ f)(x) = g(f(x)).
This similarity is not coincidental, because hypothetical judgments them-
selves can be considered as functions.11 Analogously, it seems reasonable to

10See [30], [18]. For why we say only “roughly”, see e.g., [3].
11More specifically, hypothetical judgments can be used to capture a primitive notion of a

function which is different from the derived notion of a function captured by the Π type.
For more, see [11], [12].

Composition of Deductions 9

define (c ◦ b)(x) simply as c(b(x)).12 Checking whether associativity remains
visible is a straightforward task:

x : A ` b(x) : B y : B ` c(y) : C

x : A ` (c ◦ b)(x) : C z : C ` d(z) : D

x : A ` (d ◦ (c ◦ b))(x) : D

x : A ` b(x) : B

y : B ` c(y) : C z : C ` d(z) : D

y : B ` (d ◦ c)(y) : D

x : A ` ((d ◦ c) ◦ b)(x) : D

There is, however, a problem with the CompDed rule and the correspond-
ing definition of composition as we have now presented them. For them to
work as intended, the y in c(y) in the second premise of the CompDed rule has
to be free, yet we cannot generally guarantee that c indeed contains a free
variable. If y does not occur free in c, the concluding proof object c(b(x))
becomes just c and the compositionality breaks down. Thus, we need to offer
a rule for composition of deductions that does not presuppose the occurrence
of a free variable in C.13 In other words, we need to find a more general way
to represent deductions of the general form “from A can be deduced B”.

We can achieve this with the higher-order presentation of CTT (see,
e.g., [22], [21]) by using the notion of functional abstraction, which allows us
to capture and generalize the functional content of hypothetical judgments
(deductions) such as x : A ` b : B. More specifically, assuming A and B are
types, we can form a new type (A)B, i.e., a type of functions from A to B,
which can be populated by the following rule for functional abstraction:14

x : A ` b : B
(x)b : (A)B

where the prefix notation ‘()’ indicates the abstraction: all free occurrences of
x in b become bound in (x)b. Thus, from the perspective of the higher-order
presentation of CTT, deductions can be treated as objects of higher-order
function types. Changing the rule CompDed accordingly, we get:

f : (A)B g : (B)C
CompDed*

(g ◦ f) : (A)C

where (g ◦ f)(x) : C is defined in a standard manner as g(f(x)) : C in the
context x : A. Note that this definition no longer presupposes free variables
in the proof object g occurring in the second premise in order to be amenable
for deduction composition: g itself is an object of a function type B(C) and
as such it represents a deduction. This is in contrast to CompDed (and much
closer to the rule CompMorph from category theory) where the proof object
c(y) occuring in the second premise is an object of a non-functional type

12Since it should be always clear from the context, we are overloading the symbol ‘◦’ to
mean any kind of composition, i.e., categorial, type-theoretical, or functional.
13I am indebted to Ansten Klev, who pointed this out to me and suggested a remedy

utilizing the higher-order presentation of CTT presented below.
14See [21], p. 143.

10 Ivo Pezlar

C depending on the assumption y of type B and this whole lower-order
hypothetical judgment is used to represent a deduction.

To demonstrate the higher-order approach, suppose we have two hy-
pothetical judgments x : A ` b : B and y : B ` c : C. Via the above
mentioned abstraction rule, we can construct from them the higher-order
functions (x)b : (A)B and (y)c : (B)C, respectively, that will constitute the
premises for the higher-order deduction composition rule CompDed*. Now, fol-
lowing the rule, we get:

((y)c ◦ (x)b)(x)

which according to the definition of composition can be reduced to:

((y)c)(((x)b)(x))

which in turn reduces via β-reduction/function application ((x)b)(a) ⇒β

b[a/x] to:

((y)c)(b)

and finally to:

c[b/y]

of type C with the assumption that x : A.

Remark 3.5. What kind of object is the ◦ operator? In order to properly an-
swer this, we must again utilize the higher-order presentation of CTT, which
allows us to type even constants such as ◦ that are otherwise unreachable from
the lower-order presentation (the same goes, e.g., for Π, λ, ⊃, ∧). For exam-
ple, with the higher-order presentation, conjunction ∧ can be defined as an
object of type (prop)(prop)prop, i.e., a function that takes two propositions
and returns another. Analogously, deduction composition ◦ can be defined as
an object of type (A : prop)(B : prop)(C : prop)((A)B)((B)C)(A)C, i.e., as
a function that takes five arguments, specifically propositions A, B, C and
functions (A)B and (B)C representing the corresponding deductions (i.e.,
hypothetical judgments) and returns a function (A)C.

Now, once we are equipped with the proper rule and composition oper-
ator, let us analyze our earlier derivations (3.1) and (3.2). We get derivations
(3.5) and (3.6):

f : (A ∧B)A ∧B fst : (A ∧B)A

fst ◦ f : (A ∧B)A inl : (A)A ∨B

inl ◦ (fst ◦ f) : (A ∧B)A ∨B

(3.5)

f : (A ∧B)A ∧B

fst : (A ∧B)A inl : (A)A ∨B

inl ◦ fst : (A ∧B)A ∨B

(inl ◦ fst) ◦ f : (A ∧B)A ∨B

(3.6)

With associativity present, we can see that the different order of compositions
is now finally reflected at the level of proof objects as well: for different
permutations of cut we have different yet equivalent proof objects (inl◦ (fst◦
f)) = ((inl ◦ fst) ◦ f).

Composition of Deductions 11

4. Conclusion

In this paper, we have tried to show that, contrary to Došen’s claims, the
propositions-as-types paradigm does not favour categorical proofs over in-
ferences and that the associativity of deduction composition does not have
to become invisible. We have demonstrated this in CTT, where deductions
are understood in terms of hypothetical judgments. Hypothetical judgments
can be composed while keeping track of their associativity (with the help
of higher-order presentation of CTT) and they also meet most of Došen’s
desiderata for proper representations of inferences [7]: their assumptions are
not veiled or hidden as types of free variables, they are not cumbersome to
write always explicitly and they are just as prominent as conclusions. And
although we have chosen here CTT as the representative of a Curry-Howard
isomorphism-based framework, our general points can be applied to other
related systems containing hypothetical judgments as well (e.g., calculus of
constructions by [2], unifying theory of dependent types by [16], [17] or homo-
topy type theory as presented in [31]). Of course, it still might turn out in the
end that categorial proof theory is a more suitable framework for proof anal-
ysis than the propositions-as-types paradigm, but, based on the conclusions
we have reached here, we cannot agree with Došen’s reasons for postulating
the superiority of the former.

Acknowledgments

An earlier version of this paper was presented at a seminar organized by the
Department of Logic of the Institute of Philosophy (The Czech Academy of
Sciences) in Prague, February 2019. I would like to thank all the participants
of this seminar for their helpful notes. A special thanks goes to Ansten Klev,
whose valuable remarks helped to shape this paper.

References

[1] George Boole. An Investigation of the Laws of Thought. Walton & Maberly,
1854.

[2] Thierry Coquand and Gerard Huet. The calculus of constructions. Information
and Computation, 76(2-3):95–120, 2 1988.

[3] Pierre-Louis Curien, Richard Garner, and Martin Hofmann. Revisiting the cat-
egorical interpretation of dependent type theory. Theoretical Computer Science,
546:99–119, 8 2014.

[4] H B Curry and R Feys. Combinatory Logic, volume 1 of Combinatory Logic.
North-Holland Publishing Company, 1958.

[5] Kosta Došen. Deductive Completeness. Bulletin of Symbolic Logic, 2(03):243–
283, 9 1996.

[6] Kosta Došen. Abstraction and application in adjunction. In Z. Kadelburg, ed-
itor, Proceedings of the Tenth Congress of Yugoslav Mathematicians, Faculty
of Mathematics, pages 33–46, Belgrade, 2001. University of Belgrade.

12 Ivo Pezlar

[7] Kosta Došen. Inferential Semantics. In Heinrich Wansing, editor, Dag Prawitz
on Proofs and Meaning, pages 147–162. Springer International Publishing,
Switzerland, 2015.

[8] Kosta Došen. On the Paths of Categories. In Thomas Piecha and Peter
Schroeder-Heister, editors, Advances in Proof-Theoretic Semantics, pages 65–
77. Springer International Publishing, Cham, 2016.

[9] Gottlob Frege. Posthumous Writings. Wiley, 1979.

[10] William Alvin Howard. The formulae-as-types notion of construction. In
Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin, editors, To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism.
Academic Press, 1980.

[11] Ansten Klev. A comparison of type theory with set theory. In Stefania Cen-
trone, Deborah Kant, and Deniz Sarikaya, editors, Reflections on the Founda-
tions of Mathematics. Springer, Cham, 2019.

[12] Ansten Klev. Name of the Sinus Function. In Igor Sedlár and Martin Blicha,
editors, The Logica Yearbook 2018, London, 2019. College Publications.

[13] Georg Kreisel. A Survey of Proof Theory II. In J. E. Renstad, editor, Proceed-
ings of the Second Scandinavian Logic Symposium,, page 109–170, Amsterdam,
1971. North-Holland.

[14] Joachim Lambek. Functional completeness of cartesian categories. Annals of
Mathematical Logic, 6(3-4):259–292, 3 1974.

[15] Joachim Lambek and P. J. Scott. Introduction to higher order categorical logic.
Cambridge University Press, 1986.

[16] Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University
of Edinburgh, 1990.

[17] Zhaohui Luo. Computation and reasoning: a type theory for computer science.
Clarendon Press, 1994.

[18] Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H E
Rose and J C Shepherdson, editors, Logic Colloquium ’73 Proceedings of the
Logic Colloquium, volume 80 of Studies in Logic and the Foundations of Math-
ematics, pages 73–118. Elsevier, 1975.

[19] Per Martin-Löf. Intuitionistic type theory. Studies in proof theory. Bibliopolis,
1984.

[20] Sara Negri, Jan von Plato, and Aarne Ranta. Structural Proof Theory. Cam-
bridge University Press, 2001.

[21] Bengt Nordström, Kent Petersson, and Jan M Smith. Programming in Martin-
Löf ’s type theory: an introduction. International series of monographs on com-
puter science. Clarendon Press, 1990.

[22] Bengt Nordström, Kent Petersson, and Jan M Smith. Martin-Löf ’s type theory,
Handbook of logic in computer science: Volume 5: Logic and algebraic methods.
Oxford University Press, Oxford, 2001.

[23] Ivo Pezlar. Towards a More General Concept of Inference. Logica Universalis,
8(1), 2014.

[24] Ivo Pezlar. The Placeholder View of Assumptions and the Curry–Howard Cor-
respondence. Synthese, 2020.

Composition of Deductions 13

[25] Dag Prawitz. Natural Deduction: A Proof-theoretical Study. Dover Books on
Mathematics Series. Dover Publications, Incorporated, 1965.

[26] Dag Prawitz. The Philosophical Position of Proof Theory. In R. E. Olson and
A. M. Paul, editors, Contemporary Philosophy in Scandinavia, page 123–134.
John Hopkins Press, Baltimore, 1972.

[27] Shahid Rahman, Zoe McConaughey, Ansten Klev, and Nicolas Clerbout. A
Brief Introduction to Constructive Type Theory. In Immanent Reasoning or
Equality in Action, pages 17–55. Springer, Cham, 2018.

[28] Gilbert Ryle. The Concept of Mind. University of Chicago Press, 1949.

[29] Peter Schroeder-Heister. The categorical and the hypothetical: a critique of
some fundamental assumptions of standard semantics. Synthese, 187(3):925–
942, 8 2012.

[30] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 95(01):33, 1 1984.

[31] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.

[32] Philip Wadler. Propositions as Types. Communications of the ACM, 58(12):75–
84, 2015.

[33] Richard Whatley. Elements of Logic. Printed for J. Mawman, London, 2nd
editio edition, 1827.

Ivo Pezlar
The Czech Academy of Sciences
Institute of Philosophy
Jilská 1
110 00 Prague 1
Czech Republic
e-mail: pezlar@flu.cas.cz

https://homotopytypetheory.org/book
mailto:pezlar@flu.cas.cz

