
Constructive validity of a generalized

Kreisel-Putnam rule

Ivo Pezlar∗

Abstract

In this paper, we propose a computational interpretation of the gen-
eralized Kreisel-Putnam rule, also known as the generalized Harrop rule
or simply the Split rule, in the style of BHK semantics. We will achieve
this by exploiting the Curry-Howard correspondence between formulas
and types. First, we inspect the inferential behavior of the Split rule in
the setting of a natural deduction system for intuitionistic propositional
logic. This will guide our process of formulating an appropriate program
that would capture the corresponding computational content of the typed
Split rule. Our investigation can also be reframed as an effort to answer
the following question: is the Split rule constructively valid in the sense
of BHK semantics? Our answer is positive for the Split rule as well as for
its newly proposed general version called the S rule.

Keywords: inferentialism; proof-theoretic semantics; BHK seman-
tics; Kreisel-Putnam rule; Harrop rule; Split rule; constructive validity;
Curry-Howard correspondence

1 Introduction

The Harrop rule (Harrop (1960)) also known as the Independence of Premise
rule or the Kreisel-Putnam rule:

¬C → (A ∨B)
Harrop

(¬C → A) ∨ (¬C → B)

is an intriguing rule. It is an admissible but not a derivable rule of intu-
itionistic logic (Iemhoff (2001)), despite being proof-theoretically valid (Piecha
et al. (2014)) in a variant of Dummett-Prawitz-style semantics (Prawitz (1971),
Prawitz (1973)). If we add it to intuitionistic logic, we obtain the Kreisel-
Putnam logic (Kreisel and Putnam (1957)), which is stronger than intuitionistic
logic yet still has the disjunction property (whenever A∨B is a theorem, either
A or B is a theorem), previously thought to be property specific to intuitionistic

∗Czech Academy of Sciences, Institute of Philosophy, Jilska 1, Prague 1, 110 00.

1

logic (Lukasiewicz (1952)). Furthermore, it is admissible in any intermediate
logic (Prucnal (1979)).

Yet, its generalized version, which we call the Split rule:

C → (A ∨B)
Split

(C → A) ∨ (C → B)

where C is restricted to Harrop formulas,1 is arguably even more interest-
ing. If we add it to intuitionistic logic, we obtain inquisitive intuitionistic logic
(Punčochář (2016), Ciardelli et al. (2020)), which has both the disjunctive prop-
erty and the structural completeness property (enjoyed by classical logic: every
admissible rule is derivable), again it can be shown to be proof-theoretically
valid in a variant of Dummett-Prawitz-style semantics (Stafford (2021)), yet it
is not closed under uniform substitution. Furthermore, it is admissible in any
intermediate logic (Minari and Wronski (1988)) and it also makes a surpris-
ing appearance in domain logics (Abramsky (1991), Zhang (1991)) and we are
confident that this list is not complete.2

It is worth mentioning that if we generalize the Split rule even further by
lifting the restriction of C to Harrop formulas, we get the Full Split rule:

C ′ → (A ∨B)
Full Split

(C ′ → A) ∨ (C ′ → B)

where C ′ is an arbitrary formula. This rule is also of significant interest: if
we add it to intuitionistic logic, we obtain Gödel-Dummett logic (Gödel (1932),
Dummett (1959)) which in turn found its uses in, e.g., relevance logic (Dunn and
Meyer (1971)) or fuzzy logic (Hájek (1998)). However, in this paper, we will be
interested exclusively in the Split rule restricted to Harrop formulas. Therefore,
any future mention of the Split rule will always refer to the restricted variant,
never to the Full Split rule.

Despite its significance, the Split rule itself remains mostly unexplored, es-
pecially in terms of its proof-theoretic meaning and computational content (a
recent exception to this is Condoluci and Manighetti (2018) examining the ad-
missibility of the related Harrop rule from the computational view). In this pa-
per, we fill this gap and propose a computational interpretation of the Split rule.
We will achieve this by exploiting the Curry-Howard correspondence (Curry
and Feys (1958), Howard (1980)) between formulas and types (also known as
the propositions-as-types principle). First, we inspect the inferential behavior
of the Split rule in the setting of a natural deduction system for intuitionistic
propositional logic. This will then guide our process of formulating an appro-
priate program that would capture the corresponding computational content of
the typed Split rule. Our investigation can be thus also reframed as an effort to

1Formulas in which every disjunction occurs only within the antecedents of implications
(a more formal definition is presented in Section 2.1).

2I would like to thank Vı́t Punčochář for bringing this rule and its unexpected appearances
in domain logics to my attention.

2

answer the following question: is the Split rule constructively valid in the sense
of BHK semantics? And by this we mean:

Can we find an effective function that would transform arbitrary proofs
of the premise of the Split rule into proofs of its conclusion?

Our answer is positive: we propose a function S for a general version of the
typed Split rule which we call the S rule:

[C]
...

A ∨B

[C → A]
...
D

[C → B]
...
D

S
D

where C is restricted to Harrop formulas, and show that it can be used to justify
the standard Split rule as well.

Structure. This paper is structured as follows: In Section 2 we briefly introduce
the basic concepts presumed by the paper, including the distinction between
introduction and elimination rules of natural deduction (2.2). Readers familiar
with the natural deduction framework can skip this section. In Section 3 we
determine what kind of a rule is the Split rule in relation to the distinction
between introduction and elimination rules and propose its generalization called
the S rule (3.1). Furthermore, we examine the relationship between the Split
rule and the S rule, including their justifications (3.2). And finally in Section 4
we introduce the typed version of the S rule and its corresponding function S.

2 Preliminaries

In this paper, we will be interested only in propositional logic. Specifically, as a
starting point, we choose natural deduction for intuitionistic propositional logic
(IPC) with informal computational semantics based on the Brouwer-Heyting-
Kolmogorov (BHK) interpretation. This choice is motivated by this system’s
innate affinity towards the formulas-as-types principle, also known as the Curry-
Howard correspondence. From Section 4 onwards, we also adopt a propositional
fragment of Martin-Löf’s constructive type theory with no dependent types,
which can be seen as a formalization of the computational semantics of intu-
itionistic propositional logic. We presuppose basic familiarity with these systems
on the reader’s side. However, to make the presentation as accessible as possible
we try to keep the discussion generally informal whenever reasonable.

The language L of IPC is a set of formulas A,B,C, . . . built in the usual way
from atomic formulas (propositional variables) p, q, r, . . . and standard logical
constants ∧, ∨, →, ⊥. Negation is defined as A → ⊥.

The meaning of connectives is assumed to be given in terms of canonical
proofs, which can be thought of as immediate justifications or direct grounds

3

for asserting formulas3 of the corresponding form. The shape of these canonical
proofs is prescribed by introduction rules. We discuss this more at length in the
next section but, as an example, the meaning of the conjunction ∧ connective
is specified by the conjunction introduction rule:

A B ∧I
A ∧B

which corresponds to the BHK clause for conjunction: a proof of the formula
A ∧ B consists of a proof of A and a proof of B. Asserting A ∧ B means that
we have proofs of A and B at our disposal. Furthermore, using the formulas-
as-types principle, we can make these observations more precise and state that
the canonical proof of the formula A ∧B has the form (a, b) where a is a proof
object4 of A and b is a proof object of B. If we have such proof, we can make the
judgment, also called assertion, (a, b) : A∧B that informs us that A∧B is true.
Judgments such as (a, b) : A∧B are called categorical judgments as they depend
on no assumptions. Judgments depending on assumptions are called hypothet-
ical judgments. There are also noncanonical proofs, which can be thought of as
delayed justifications or indirect grounds for asserting the corresponding formu-
las. Noncanonical proofs, however, have to be reducible to the canonical proofs,
otherwise, they are meaningless. From the perspective of the formulas-as-types
principle, we can view noncanonical proofs as programs and canonical proofs as
their values (i.e., as programs that cannot be evaluated/simplified any further).

2.1 Harrop formulas and uniform substitution

Harrop formulas (Harrop (1956)), also known as Rasiowa-Harrop formulas (Ra-
siowa (1954)), are formulas that do not contain disjunction ∨ except in the
antecedents of implications. More formally, we can inductively define the set of
(propositional) Harrop formulas by the following clauses:

(a) any atomic formula and ⊥ is a Harrop formula,

(b) if A and B are Harrop formulas, then A ∧B is a Harrop formula,

(c) if A is an arbitrary formula and B is a Harrop formula, then A → B
is a Harrop formula.

Alternatively, we could also define Harrop formulas using the notion of a disjunction-
free formula (i.e., a Harrop formula as a formula where the rightmost implication
has a disjunction-free formula in the consequent) but we will prefer the inductive
definition.

3Strictly speaking, what we are asserting are propositions, not formulas, but for simplicity,
we will treat propositions and formulas as interchangeable terms in this paper.

4Proof objects (proof terms, or simply proofs when the meaning is clear from the context),
either canonical or noncanonical, should be thought of as symbolic evidence that something
is true and they do not carry epistemic force on their own. The carriers of epistemic force are
demonstrations (logical derivations) that proceed from judgment(s) to another judgment.

4

Earlier we have mentioned that systems containing the Split rule (such as,
e.g., inquisitive intuitionistic logic) are not closed under uniform substitution.
This is because the Split rule itself is not closed under it. A rule (or an axiom) is
said to be closed under uniform substitution if after applying a uniform substitu-
tion to it the resulting rule is still valid. More formally, let R(p1, . . . , pn) be a rule
in IPC where p1, . . . , pn are the atomic formulas in R and let σ(R(p1, . . . , pn))
represent the result of substituting arbitrary formulas A1, . . . , An for all occur-
rences of p1, . . . , pn in R, i.e., R(A1, . . . , An). Then, R(p1, . . . , pn) is said to be
closed under uniform substitution if and only if σ(R(p1, . . . , pn)) is a valid rule
for any uniform substitution σ.

For example, let us consider the following instance of the Split rule which is
valid:

p → (q ∨ r)
Split

(p → q) ∨ (p → q)

since p, as an atomic formula, is a Harrop formula. Now, let us apply a substi-
tution σ where the formula p is uniformly replaced by the formula s ∨ t:

(s ∨ t) → (q ∨ r)
Split′

((s ∨ t) → q) ∨ ((s ∨ t) → q)

Since s∨ t is not a Harrop formula, it is easy to see that the above substitution
has produced a rule that is no longer valid. Thus, the Split rule is not closed
under uniform substitution.

2.2 Introduction and elimination rules

The computational content of the natural deduction rules of IPC is closely tied
to their inferential behavior which is in turn specified by the introduction and
elimination rules (including reduction rules, which link them together) for spe-
cific logical connectives. Generally speaking, an introduction rule for a connec-
tive ◦ is a rule whose conclusion has ◦ as the main connective. An elimination
rule is a rule that has this ◦-formula as one of its premises.5

Semantically speaking, introduction rules define the meanings of new con-
nectives,6 while elimination rules show how to use them. From this perspective,
introduction rules are self-justifying as they effectively act as stipulations.7 On
the other hand, elimination rules require justification.8 This justification is typ-
ically achieved by relating elimination rules to introduction rules via reduction
rules: what can be derived from A by elimination rules is to be determined by

5See, e.g., Mancosu et al. (2021), p. 69.
6See Gentzen (1935), Gentzen (1969).
7See, e.g., Schroeder-Heister (2006), p. 532.
8This would not be the case, however, if we were to switch from the “verificationist”

approach privileging introduction rules to the “pragmatist” approach that views elimination
rules as self-justifying and introduction rules as in need of justification.

5

the premises from which was A canonically derived, i.e., derived by introduction
rules for the main operator of A.

For example, the implication connective → is specified by the following im-
plication introduction and elimination rules:

[A]
...
B →I

A → B

A → B A →E
B

The introduction rule →I tells us what the canonical (meaning constituting)
proofs of formulas of the form A → B should look like. Specifically, it tells us
that in order to prove a formula of the form A → B, i.e., introduce it into a
proof, we first need to find a proof of B from an assumption that we have a
proof of A, which then can be discharged. In other words, we need to find a
procedure that takes an arbitrary proof of A and transforms it into a proof of
B (in accordance with the BHK interpretation). The elimination rule →E tells
us what can we do with formulas of the form A → B in proofs. Specifically, it
tells us that if we have a proof of A → B (a major premise) and a proof of A
(a minor premise), then we can derive B and, in the process, eliminate A → B
from the proof.

Note that the rules →I and →E are, in a way, inverted versions of each other:
what goes into introducing → comes out when eliminating it, no more no less.
In other words, if we apply the →I rule and then apply →E immediately after,
nothing should be gained or lost in the proof, we are just making an unnecessary
detour. To check this, consider the following derivation:

[A]
...
B →I

A → B A →E
B

It starts with deriving B (under the active assumption A, and possible other
assumptions) and ends, again, with deriving B. The consecutive applications
of →I and →E add no new information: it is just a roundabout way of getting
where we started in the first place, i.e., the derivation of B. These detours in
derivations can be removed in a process called a detour conversion or a reduction
(see Prawitz (1965)). We can depict this process via the following “metarule”
(where D represents a derivation):

[A]n

D
B →In

A → B
D′

A →E
B

reduces to
=======⇒

→red

D′

A
D
B

6

A proof with no detours is called a normal proof or a proof in a normal form.
Analogously, no new information should be gained if we apply introduction

rules immediately after elimination rules. Consider, e.g., the following deriva-
tion:

A → B [A]
→E

B →I
A → B

Similarly as above, it starts with A → B (and an active assumption A) and
ends with deriving A → B (with A discharged). We can depict this process,
sometimes called expansion, via the following metarule:

D
A → B

expands to
=======⇒

→exp

D
A → B [A]

→E
B →I

A → B

When introduction and elimination rules behave in this way, i.e., when elim-
ination rules do not allow us to derive more (i.e., they are not too strong = local
soundness, see Pfenning and Davies (2001)) or less (i.e., they are not too weak
= local completeness) than the introduction rules justify, it is said that they
are harmonious (see Dummett (1991), Tennant (1978)). For a famous example
of introduction and elimination rules that are not harmonious, see Prior’s Tonk
(Prior (1960)).

2.3 Formulas-as-types interpretation

The computational content corresponding to implication introduction and elimi-
nation rules can be thought of as expressed by the notions of function abstraction
and function application from lambda calculus. If we decorate the rules with
the appropriate proof objects, we obtain the typed variants of →I and →E:

[x : A]
...

b(x) : B
→I

λx.b(x) : A → B

c : A → B a : A →E
ap(c, a) : B

The function constants λ and ap that appear in the conclusions of the rules can
be understood as the constructor and the selector for the type A → B, respec-
tively. Constructors give us as values canonical objects of the corresponding
types (they show us how to inhabit them), and selectors then show us how
we can define functions (via pattern matching and/or recursion) on the types
specified by the constructors. Thus, selectors are functions operating on the
type specified by constructors. In the case of →I and →E, λ constructs proof
objects of the type A → B, i.e., essentially lambda codings of functions from A
to B, while the selector ap shows us how we can apply these lambda codings of
functions to arguments.

7

We will need one more rule that will show us how to compute the program
specified by the selector, specifically, how to compute the function application
ap(c, a) when c has the form of a canonical proof object, i.e., c = λx.b(x). This
is achieved by the following rule that corresponds to the metarule →red for
detour reduction we discussed earlier:

[x : A]
...

b(x) : B a : A
→C

ap(λx.b(x), a) = b(a) : B

where b(a) is the result of substituting a for x in b. This kind of rule is called
computation rule:9 it shows how selectors operate on the canonical proof objects
generated by the constructors of the corresponding type. Hence, we can say that
computation rules link programs (i.e., the functions/selectors appearing in the
conclusions of typed elimination rules) to the corresponding constructors (i.e.,
values appearing in the conclusions of typed introduction rules).

By adding Split to IPC we are going beyond intuitionistic logic, so we have
to make a few comments about the formulas-as-types principle as it was initially
intended for intuitionistic reasoning only. The standard way of carrying over
this principle to stronger logics than intuitionistic is to simply assume that the
new axioms of the stronger logic hold for arbitrary formulas and assign them
corresponding proof objects in the spirit of the formulas-as-types principle.

For example, in the case of classical logic, we might assume that the law of
excluded middle A ∨ ¬A holds for arbitrary formulas and assign it the proof
object lem, thus obtaining the judgment lem : A ∨ ¬A. The issue here is, of
course, that nobody knows how the proof object lem is supposed to be computed.
If we did we would be in possession of a universal decidability procedure for every
formula.10 Thus, the function lem effectively represents an unexecutable black
box program.

With the Split rule, we approach the issue analogously. We adopt a new
Split axiom schema:

(C → (A ∨B)) → ((C → A) ∨ (C → B))

where C is restricted to Harrop formulas, transform it into a rule form (using
its antecedent as the premise and its consequent as the conclusion for the rule)
and assign it corresponding proof objects in the style of the formulas-as-types
principle:

f : C → (A ∨B)
Split

s(f) : (C → A) ∨ (C → B)
9Note that we use the explicit style of computation rules with displayed premises, which

we adopt from Martin-Löf (1984).
10Recall that in the constructive setting the law of excluded middle is not a “meaningless”

tautology but a judgment of decidability of the proposition A.

8

where f represents an arbitrary proof object of C → (A∨B) and s the function
associated with the Split rule. The question will then become: how do we
compute s(f)? Can we find a general procedure for evaluating the s function
(program) and thus expressing the computational content of the corresponding
rule? Our answer will be positive but it will require some further generalizations
of the Split rule.

Now, let us examine the Split rule.

3 Generalizing the Split rule

3.1 The Split rule

What kind of a rule is the Split rule from the perspective of introduction and
elimination rules of natural deduction?11 For convenience, let us repeat the
rule, also recall that C is restricted to Harrop formulas:

C → (A ∨B)
Split

(C → A) ∨ (C → B)

At first look, it seems to be either an introduction rule for the disjunction con-
nective (since ∨ appears as the main connective in the conclusion) or an elimi-
nation rule for either implication or disjunction, since those are the connectives
appearing in the premise.

First, let us consider it as an introduction rule for disjunction. In IPC, the
meaning of the ∨ connective is already fixed via its standard introduction rules:

A ∨ILA ∨B
B ∨IRA ∨B

which are taken as fully specifying the meaning of disjunction as a sort of weak-
ening of A or B into A ∨ B. So, adding a supplementary introduction rule in
the form of the Split rule would not only be unwarranted but would also shift
the meaning of disjunction since viewing an inference from C → (A ∨ B) to
(C → A) ∨ (C → B) as weakening does not seem appropriate. Moreover, note
that disjunction appears in the premise of the Split rule (i.e., it presupposes
we have already introduced ∨ and thus understand what it means12). Hence, it
does not seem reasonable to view the Split rule as a disjunction introduction-like
rule.13

11Recall that the computational content is tied to the inferential content which is then tied
to the introduction and elimination rules and their reductions. Thus, we want to position the
Split rule within the introduction and elimination rules environment to guide our investigations
of its computational content.

12In general, the fact that a connective we want to define via an introduction rule already
appears among the premises of that rule doesn’t necessarily result in paradoxes (see, e.g.,
Tranchini (2019), Pezlar (2021)) since we can have recursive definitions but this is not the
case here.

13When discussing the Split rule, we will talk about introduction-like and elimination-like
rules to distinguish them from the standard introduction and elimination rules associated with
connectives.

9

So, by default, it seems to be an elimination-like rule (or rather more gener-
ally, a non-introduction rule) either for implication or disjunction. Both choices
are feasible but, for the sake of space, in this paper, we will investigate only
the second option as it leads to a simpler generalization. Note, however, that if
we really want to treat the Split rule as a disjunction elimination-like rule, we
need disjunction ∨ to be the main connective of its premise, otherwise, it would
not fit the general pattern of elimination rules. To get around this issue, we
decompose the original premise of the Split rule into a hypothetical judgment.
The resulting rule, built in the style of standard disjunction elimination rule,
then looks as follows:

[C]
...

A ∨B

[C → A]
...
D

[C → B]
...
D

S
D

where C is restricted to Harrop formulas. We will call this the S rule and it can
be read as follows: if we derive A∨B under the assumption C and furthermore
we can derive D separately from both C → A and C → B, then we can proceed
to D and discharge the assumptions C, C → A, and C → B.

For now, we will leave the question of justification of this rule open and
return to it in Section 4 once we have introduced its typed variant.

Example. To get a better idea of how the S rule works, let us demonstrate it
in practice. Consider the following two formulas:

(p → (q ∨ r)) → ((p → q) ∨ (p → r))

and

((s ∨ t) → (q ∨ r)) → (((s ∨ t) → q) ∨ ((s ∨ t) → r))

With the S rule, we can prove the first formula as follows:

[p → (q ∨ r)]2 [p]1

→Eq ∨ r

[p → q]3
∨IL

(p → q) ∨ (p → r)

[p → r]4
∨IR

(p → q) ∨ (p → r)
S1,3,4

(p → q) ∨ (p → r)
→I2

(p → (q ∨ r)) → ((p → q) ∨ (p → r))

However, we are not able to prove the second formula because its proof would
require us to assume instead of an atomic p, which is a Harrop formula (since
every atom is a Harrop formula), a formula q∨ r which is not a Harrop formula.
Thus, we cannot apply the S rule since C is restricted to Harrop formulas only.14

Before we progress towards our main objective of analyzing the computa-
tional content of the S rule in Section 4, let us first take a closer look at how it
relates to the Split rule.

14Recall that the Split rule and/or the S rule are not closed under uniform substitution:
the second formula is a substitution instance of the first formula with (s ∨ t) substituted for
p.

10

3.2 The Split rule and the S rule

The relationship between the Split rule and the S rule is perhaps best understood
as similar to the relationship between elimination rules and general (generalized,
parallel) elimination rules.

What are general elimination rules? Simply put, they are elimination rules
following the “indirect” pattern of disjunction elimination rule ∨E which can be
seen as utilizing the principle of proof by induction: to show that an arbitrary
D follows from A ∨ B it is sufficient to show that it follows from the “base
cases”, i.e., the canonical proofs of A ∨ B from A and from B. If we apply
this style of reasoning to the elimination rules for other connectives of IPC we
obtain corresponding general elimination rules which have a more general form
than their standard variants but are logically equivalent.15

For example, the general elimination rules for conjunction ∧ and implication
→ are as follows:

A ∧B

[A,B]
...
D ∧GE

D
A → B A

[B]
...
D →GE

D

Let us comment briefly on the general elimination rule for implication. We
can read it as follows: if we derive A → B, and we derive some further conse-
quences D from B (at that point without knowing whether A is true) and if it
turns out that A is indeed true, then we will know that D is true as well and we
can derive it (recall that the immediate justification for deriving A → B is the
existence of a derivation of B under the assumption A. So if D can be derived
from B, then it must be already derivable from A).

So, returning to the S rule, we can think of it as a general version of the
Split rule, similarly as →GE is a general version of →E:

A → B B →E
B

generalizes to
A → B A

[B]
...
D →GE

D

C → (A ∨B)
Split

(C → A) ∨ (C → B)
generalizes to

[C]
...

A ∨B

[C → A]
...
D

[C → B]
...
D

S
D

As we have mentioned, elimination rules and their general counterparts are
equivalent. Does this hold for the Split rule and the S rule as well? As it turns
out, they are indeed equivalent. This can be shown as follows. Suppose that we

15See, e.g., Schroeder-Heister (2014). General elimination rules have many useful prop-
erties. For example, they ensure the structural correspondence between natural deduction
derivations and sequent calculus derivations required for the translation of the former to the
latter. See Negri and von Plato (2001).

11

have at our disposal the S rule and further suppose that we have derived the
premises for the Split rule, i.e., we have a derivation (i.e., we know the premise)

D1

C → (A ∨B)
of C → (A ∨B). Now, assuming D1 is either a canonical proof

of C → (A ∨ B) (i.e., we have immediate justification for asserting it) or that
can be reduced to such a proof by a series of finite steps, it is of the form

[C]

D′
1

A ∨B →I
C → (A ∨B)

where

C

D′
1

A ∨B

is a derivation of A ∨B from C. From this

derivation we can obtain by means of the S rule (and the ∨I rules) a derivation:

[C]

D′
1

A ∨B

[C → A]
∨IL

(C → A) ∨ (C → B)

[C → B]
∨IR

(C → A) ∨ (C → B)
S

(C → A) ∨ (C → B)

which is a derivation of the conclusion (C → A) ∨ (C → B) of the Split rule.

Next, the other direction. Let us suppose that the Split rule is at our disposal
and that we have derived the premises of the S rule, i.e., we have a derivation

C
D1

A ∨B

of A ∨ B from C, a derivation
C → A
D2

D

of D from C → A, and a

derivation
C → B
D3

D

of D from C → B. Thus, since we have a derivation

C
D1

A ∨B

(i.e., the first premise of the S rule), we can further assume that we can

obtain a derivation
D′

1

C → (A ∨B)
of C → (A ∨B) via the →I rule.

Now, by an application of the Split rule using D′
1 as a premise we can obtain

a derivation:

D′
1

C → (A ∨B)

(C → A) ∨ (C → B)

and finally by an application of the ∨E rule using this derivation, D2 and D3 as
premises we can obtain a derivation of D, i.e., the conclusion of the S rule.

3.3 Justification of the Split rule

We have said that introduction rules are typically viewed as self-justifying in
contrast to elimination rules that require further justification. Now, since we
have decided to view the Split rule as an elimination-like rule it is in need of fur-
ther justification as well. As we have mentioned, justification of the elimination

12

rule involves specifying certain reduction procedures for derivations that were
derived by elimination rules. For example, the implication elimination rule can
be regarded as justified with respect to the reduction procedure →red.

This line of reasoning is another way to understand the connection between
the Split rule and the S rule: we can view the latter as a means of justifying the
former. More specifically, we can consider the following reduction procedure for
justifying the Split rule:16

D
C → (A ∨ B)

Split
(C → A) ∨ (C → B)

reduces to
=======⇒
Split-red

D
C → (A ∨ B) [C]1

→E
A ∨ B

[C → A]2

∨IL
(C → A) ∨ (C → B)

[C → B]3

∨IR
(C → A) ∨ (C → B)

S1,2,3
(C → A) ∨ (C → B)

Furthermore, note that this reduction is distinct from the standard reductions
as it relies on “external” rules. Namely, disjunction introduction rules, which
are trivially justified as introduction rules, implication elimination rule (which
is justified by its corresponding reduction rule →red), and the S rule. Compare
this with, e.g., the standard reduction procedure for implication →red which
relies only on given subderivations and invokes no other rules.

We can see that this justification of the Split rule relies, among other rules,
on the S rule. The S rule – as an elimination-like rule itself – thus needs
justification as well. Thus, we will also need to supply reduction procedures for
it. Since we treat the S rule as a disjunction elimination-like rule, the notion
of reduction/detour conversion still makes sense, as it is possible to introduce
the disjunction A∨B under the assumption C and then immediately eliminate
it via the S rule, which then constitutes an unnecessary detour in a derivation
(analogously with the Split rule). The reduction rules we obtain are as follows:

[C]

D1

A ∨IL
A ∨B

[C → A]

D2

D

[C → B]

D3

D
S

D

reduces to
=======⇒

S-redL

[C]

D4

C → A
D2

D

where

[C]

D4

C → A

is constructed from
C
D1

A

via application of →I.

[C]

D1

B ∨IR
A ∨B

[C → A]

D2

D

[C → B]

D3

D
S

D

reduces to
=======⇒

S-redR

[C]

D4

C → B
D3

D

16I thank Antonio Piccolomini d’Aragona for suggesting this variant of the reduction rule.
Note also that we agree with Schroeder-Heister (2006) (p. 553) that “[i]n principle, reductions
should be definable for derivation structures ending with any non-introduction inference.”

13

where

[C]

D4

C → B

is constructed from
C
D1

B

via application of →I.

With the reductions S-redL and S-redR the justification of the Split rule is
achieved (we will inspect these reductions, more specifically, their typed variants
in the form of computation rules more in the next section).

4 Formulas as types: Typing the S rule

Let us return to our original task, i.e., investigating the computational content of
the Split rule in the style of BHK semantics and guided by the formulas-as-types
principle while assuming a propositional fragment of Martin-Löf’s constructive
type theory on the background.

As mentioned, we will regard the Split rule as a disjunction elimination-like
rule that can be generalized into the S rule. Thus, let us start by considering
the standard typed variant of the disjunction elimination rule before we try to
model the selector for S based on it.

The typed introduction and elimination rules specifying the constructors and
the selector for disjunction are the following:

a : A ∨IL
inl(a) : A ∨B

b : B ∨IL
inr(b) : A ∨B

c : A ∨B

[x : A]
...

d(x) : D

[y : B]
...

e(y) : D
∨E

D(c, x.d, y.e) : D

The constructors inl and inr for the type A∨B are called injections and they
tell us from which disjunct was the disjunction constructed. The selector D is
a function that takes three arguments (an arbitrary proof of A ∨B, a function
d(x) that transforms an arbitrary proof of A into a proof of D, and a function
e(y) that transforms an arbitrary proof of B into a proof of D) and returns a
proof of D as a value. The notation ‘x.d’ means that the variable x becomes
bound in d(x) via D, analogously for ‘y.e’.

Note that the selector D operates essentially as a pattern-matching program
that incorporates the method of proof by cases by its ability to generate sub-
proofs: it checks whether A ∨ B was derived from A or from B (i.e., whether
the forms of its canonical proofs are inl(a) or inr(b)): if from A, then we should
continue by computing the subprogram d(x), if it was derived from B, then we
should continue by computing the subprogram e(y). The corresponding com-
putation rules for these two cases, which show us how the selector D operates
on the canonical proof objects generated by the constructors of the type A∨B,
are as follows:

14

a : A

[x : A]
...

d(x) : D

[y : B]
...

e(y) : D
∨CL

D(inl(a), x.d, y.e) = d(a) : D

b : B

[x : A]
...

d(x) : D

[y : B]
...

e(y) : D
∨CL

D(inr(b), x.d, y.e) = e(b) : D

where d(a) is the result of substituting a for x in d, analogously for e(b).
Now, let us return to the S rule. If we want to produce a typed variant

of the S rule in the style of the typed disjunction elimination rule, we would
need to find a program (a three-argument function), let us call it S, that would
incorporate the method of proof by cases and could bind variables (i.e., it could
discharge assumptions).

Immediately, we can see that the selector D seems as a good basis for the
typed S rule. It appears to fit all the requirements: it takes three arguments, it
can discharge assumptions, but most importantly, the core mechanism of the se-
lector D is subproof generation, specifically, case analysis, not just substitution.
And, as it turns out, that is exactly what we need to express the computational
content of the S rule, and thus effectively also of the Split rule.

Let us produce the typed variant of the S rule taking all these considerations
into account, which will give us the new selector S:17

[z : C]
...

c(z) : A ∨B

[x : C → A]
...

d(x) : D

[y : C → B]
...

e(y) : D
S

S(z.c, x.d, y.e) : D

where C is restricted to Harrop formulas. Note that this rule differs from the
typed disjunction elimination rule in three key aspects: the first premise is a
hypothetical judgment:

z : C
...

c(z) : A ∨B

i.e., z : C ⊢ c(z) : A ∨ B in linear notation, the assumptions of the subproofs
take the form of an implication (i.e., they are not composed of subformulas of
the original disjunction), and the formula C has to be a Harrop formula.

Now, before we can get to the explanation of how to compute the selector S,
we first need to make a short detour and explain the form of the major premise of
the S rule, i.e., the hypothetical judgment z : C ⊢ c(z) : A∨B. In Martin-Löf’s
constructive type theory, the standard meaning of the hypothetical judgment of
the general form (where B is a non-dependent type):

x : A ⊢ b(x) : B

17We will refrain from calling the selector S “split” as in the literature on type theory a
selector named split already appears but it is used as the selector for conjunction, or more
precisely, for the cartesian product of two types (see, e.g., Nordström et al. (1990), p. 73).

15

is that b(a) is a proof object for B assuming we have a proof object a for A.
In other words, its meaning is explained via reducing it to the corresponding
categorical judgment:

b(a) : B

And the meaning explanation of this judgment is that b(a) is a program that
upon computation yields a canonical proof object of the type B. Note that
b(a) : B is obtained by substituting the closed proof object a of the type A for
the free variable x in b(x) and B.18 To put it differently, in order to be able to
compute the open proof object b(x) depending on x : A to obtain the canonical
proof object of the type B, we first need to replace the free variable x with the
appropriate closed proof object a.

Now, let us return to the S rule. Observe that the major premise of the S
rule is a more specific hypothetical judgment than the one presented above as its
assumption is restricted to Harrop formulas only. This fact, together with Smith
(1993)’s results showing us that we can consider open proof objects computable
to a canonical form as long as they range over Harrop formulas,19 allows us to
introduce a specialized variant of the hypothetical judgment of the form:

z : C ⊢ b(z) : B

where C is restricted to Harrop formulas with the following modified meaning
explanation: b(z) is a program that upon computation yields a canonical proof
object of the type B.20 In other words, this hypothetical judgment behaves
essentially as a categorical one since z : C is a computationally irrelevant as-
sumption and as such it is not needed for the evaluation of b(z) : B.21 Also,
note that this meaning explanation mirrors the meaning explanation of the
corresponding categorical judgment, so it does not break the general idea of
explaining hypothetical judgments via categorical ones.

With this specialized hypothetical judgment, we can now explain the com-
putational interpretation of the S selector. So, how do we compute this new
program (i.e., noncanonical proof object) of the form S(c, d, e)? We begin by
computing c to the canonical form. First, note that c is actually an open term
c(z), i.e., it depends on the variable z. Computing a program with a hole might
seem odd at first, however, we have to keep in mind that it is not just any hole:
the variable z is of type C which is restricted to Harrop formulas only. This
makes it an instance of the special kind of hypothetical judgment we have just
introduced above and, consequently, it means that c(z) can be computed to a
canonical form as is. If the value of c(z) is of the form inl(a(z)) with a : A
and z : C, then lambda abstract over the variable z to obtain λz.a(z) (of type
C → A) and continue by computing d(λz.a(z)) of type D. If the value of c(z) is

18Furthermore, we also need to know that b(x) is extensional in the sense that if a = a′ : A,
then b(a) = b(a′) : A. See Martin-Löf (1984).

19For details, see Appendix A.
20I thank Ansten Klev for this suggestion.
21It seems to correspond to proof irrelevant assumptions of the form x ÷ A introduced in

Pfenning (2001), however, for the sake of space, we will not explore this connection further
here.

16

of the form inr(b(z)) with b : B and z : C, then lambda abstract over the variable
z to obtain λz.b(z) (of type C → B) and continue by computing e(λz.b(z)) of
type D.

This explanation of S is expressed by the following computation rules:

[z : C]
.
.
.

a(z) : A

[x : C → A]
.
.
.

d(x) : D

[y : C → B]
.
.
.

e(y) : D

S(z.inl(a(z)), x.d, y.e) = d(λz.a(z)) : D

[z : C]
.
.
.

b(z) : B

[x : C → A]
.
.
.

d(x) : D

[y : C → B]
.
.
.

e(y) : D

S(z.inr(z.b(z)), x.d, y.e) = e(λz.b(z)) : D

We can observe that the selector S behaves analogously to the selector D:
the main difference is that the function d(x) requires an argument of type C →
A, not A as with D, so instead of substituting a for x in d(x) we substitute
λz.a(z) for x in d(x). Also, note that the selector S binds the variable z in a(z).
Analogously for the function e(y).

Note. We can regard the typed S rule as a generalized version of the typed
disjunction elimination rule. In other words, we can view the selector D as a
special case of the selector S: by choosing c(z) to be inl(a) or inr(b) we are
making the derivation of A ∨ B independent of the assumption z : C, which is
then correspondingly reflected in the assumptions of the subproofs. Thus, we
get A and B instead of C → A and C → B since A ∨ B no longer depends on
C. The computation and expansion rules will be changed accordingly.

Since we have found a function that transforms the premises of the rule S
into its conclusion, we can say that the rule is constructively valid in the sense
of BHK semantics.22 But what about the original Split rule itself? Is it also
constructively valid? First, note that we cannot simply replace the black box
placeholder selector s discussed at the beginning:

f : C → (A ∨B)

s(f) : (C → A) ∨ (C → B)

where C is a Harrop formula, with the selector S:

f : C → (A ∨B)

S(f) : (C → A) ∨ (C → B)

and expect it to work. The reason for that is that S takes different arguments
than the above derivation provides, namely S is a function that takes three
arguments (a function c that transforms an arbitrary proof of C into a proof of
A∨B, a function d that transforms an arbitrary proof of C → A into a proof of
D, and a function e that transforms an arbitrary proof of C → B into a proof of

22Recall that by a constructively valid rule in the sense of BHK semantics we mean a rule
for which we can find an effective function that transforms arbitrary proofs of the premises
into proofs of the conclusion. Also, we should not conflate the notions of constructive validity,
schematic validity (Piccolomini d’Aragona (2024)), and proof-theoretic validity (see Schroeder-
Heister (2006)), which in turn should not be conflated with admissibility. These notions are
no doubt related but distinct (see also de Campos Sanz et al. (2014)).

17

D) and returns a proof of D as a value. On the other hand, s would have to be a
function that requires a single argument (an arbitrary proof f of C → (A∨B))
and returns a proof of (C → A) ∨ (C → B) as a value.

However, since the Split rule and the S rule are interderivable (see Section
3.2), we can justify its constructive validity in an indirect way.23 We simply
apply the Split-red reduction rule (now typed) to a derivation ending with the
Split rule (assuming D is a closed valid derivation):

D

f : C → (A ∨ B)
Split

s(f) : (C → A) ∨ (C → B)

reduces to
=========⇒
Split-red

D

f : C → (A ∨ B) [z : C]1

→E
ap(f, z) : A ∨ B

[x : C → A]2

∨IL
inl(x) : (C → A) ∨ (C → B)

[y : C → B]3

∨IR
inr(y) : (C → A) ∨ (C → B)

S1,2,3
S(z.ap(f, z), x.inl(x), y.inr(y)) : (C → A) ∨ (C → B)

Now, since we know that the S rule is valid, we can claim that this derivation
is also valid (assuming D is valid), and use this piece of knowledge to further
justify the claim that the Split rule is valid as well.24 Furthermore, it can be
shown that if we add the S selector, i.e., the typed S rule, to a propositional
fragment of Martin-Löf’s constructive type theory, it retains normalization (see
Appendix B).

Note. Could perhaps a simpler justification be found for the Split rule? First,
let us consider the following (untyped) derivation containing an application of
the Split rule:

[C]1

D′

A ∨ILA ∨B →I1C → A ∨B Split
(C → A) ∨ (C → B)

An analogous derivation can be provided for the right disjunct B but we will
now focus only on the left disjunct A. Now, consider the following reduction
procedure (compare with Split-red):

[C]1

D′

A ∨IL
A ∨B →I1

C → A ∨B Split
(C → A) ∨ (C → B)

reduces to
=======⇒
Split-red2

[C]1

D′

A →I1
C → A ∨IL

(C → A) ∨ (C → B)

23I thank Antonio Piccolomini d’Aragona for this observation for raising the issue discussed
in the following note.

24Interestingly, Plisko (2009) shows that the Harrop rule (and thus also the Split rule) is
not valid in realizability semantics (Kleene (1945); I thank one of the reviewers for bringing
this to my attention). Considering that realizability semantics and BHK semantics are often
taken to be more or less corresponding to each other, this constitutes an interesting topic for
further research. However, it is beyond the scope of the present paper.

18

Can this be regarded as a simpler, more basic justification of the Split rule
since it makes no use of the S rule and only relies on ∨I and →I rules? We
believe so, however, with one important caveat – it rather shows that Split is
proof-theoretically valid, not necessarily constructively valid: the above reduc-
tion procedure still gives us no indication as to how the corresponding selector
function that transforms proofs of the premise of the Split rule into proofs of
the conclusion should look like. This becomes more clear when we consider the
typed variants:

[z : C]1

D′

a(z) : A
∨IL

inl(a(z)) : A ∨ B
→I1

λz.inl(a(z)) : C → A ∨ B
Split

s(λz.inl(a(z))) : (C → A) ∨ (C → B)

reduces to
=======⇒
Split-red2

[z : C]1

D′

a(z) : A
→I1

λz.a(z) : C → A
∨IL

inl(λz.a(z)) : (C → A) ∨ (C → B)

The question that still remains open is how the function s should be computed.
As mentioned above, we cannot simply replace it with S. And supplying some
straightforward computational rule for s such as s(λz.inl(a(z))) = inl(λz.a(z)) :
(C → A) ∨ (C → B) would also not suffice as we would still need to take
care of the other disjunct as well. And if we decide to merge everything into a
single selector (one that combines the mechanisms of withdrawing assumptions,
making substitutions, and analyzing subcases), we would ultimately arrive back
at the selector S or some variant of it.

5 Conclusion

We have presented a general version of the generalized Kreisel-Putnam rule, also
known as the Split rule, called the S rule, and shown that it is constructively
valid in the sense of BHK semantics. Specifically, we have found an effective
function that transforms arbitrary proofs of the premises into proofs of the
conclusion. We have called this function the selector S and it can be used
to indirectly justify the Split rule itself. The most tricky part of the typed S
rule/selector S lies in the fact that it requires an evaluation of an open proof
object to a canonical form. This issue can be, however, overcome once we realize
that the free variables of the open proof object range only over Harrop formulas
which are computationally irrelevant. Furthermore, we have checked that if we
add this rule into a propositional fragment of constructive type theory, it retains
normalization.

In terms of future work, there are several directions to consider: i) investi-
gating alternative variants of the generalized Split rule, including a higher-level
natural deduction variant and a dependent type variant, ii) inspecting the possi-
bility of treating the generalized Split rule as an implication elimination-like rule
instead of a disjunction elimination-like rule, iii) examing the generalized Split
rule from perspectives of other semantics than BHK (e.g., realizability seman-
tics), and finally iv) exploring the Split rule in a first-order setting, including
its existential analog:

19

C → ∃xA ∃ Split
∃x(C → A)

where C is a first-order Harrop formula, i.e., a formula that does not contain ∨
or ∃ except in the antecedents of implications, and x is not free in C.

Concerning related work, Condoluci and Manighetti (2018) proposed a typed
rule for the Harrop rule that follows the same general pattern as our typed Split
rule (i.e., it is based on the typed disjunction elimination rule). Interestingly,
they arrived at this pattern differently: while our approach is bottom-up (we
have started by studying the inferential behavior of the Split rule and then
generalized it), their approach was top-down (they have started with Visser
rules (Roziére (1993), Iemhoff (2005)) as a basis for all admissible rules and
considered the Harrop rule as a special case). Furthermore, although they also
relied on the propositions-as-types principle in their investigation, their goal was
different from ours. They were interested in examining the notion of admissibil-
ity, while we are interested in the proof-theoretic/computational meaning and
constructive validity of the Split rule itself.

A Appendix: Open proof objects computable
to canonical forms

Most of the work necessary to show that we can compute open proof objects
ranging over Harrop formulas to canonical values has been already done and
can be divided into two main observations:

Observation 1. Harrop formulas have no computational/constructive con-
tent due to the fact that disjunction can never appear as the main connec-
tive.25 This is a well-known fact commonly used in proof extraction re-
search to simplify extracted programs (Goad (1980), Sasaki (1986), Berger
et al. (2006), Schwichtenberg and Wainer (2012)).

Observation 2. Smith (1993) translated Kleene-Aczel’s slash computabil-
ity relation (Kleene (1962), Aczel (1968)) to a type-theoretic setting,
specifically to Martin-Löf’s constructive type theory, and showed that it
can be used to formulate conditions for proof objects with free variables
ranging over Harrop formulas to be computable to canonical forms, i.e.,
values.

First, however, we need to discuss how Harrop formulas and the slash com-
putability relation are translated into a type-theoretic setting. The notion of
Harrop formula introduced in 2.1 can be easily carried over with one exception:

25In this paper, we are solely interested in the variant of the Split rule where C is a Harrop
formula, however, it might be interesting to consider also different variants. For example,
a variant where C is an almost negative formula (Troelstra (1973)), or a normal formula
(Nepeivoda (1978), Nepeivoda (1982)), or a singleton formula (Sasaki (1986)), or a rank 0
formula (Hayashi and Nakano (1988)) that generalize them all.

20

we cannot incorporate ⊥ into the definition of Harrop formulas if we assume
⊥ is the formula that has no proof. If we did, the key Theorem 1 (see below)
would no longer hold. Specifically, we could not be able to recursively construct
a proof object for ⊥ since, simply put, there is none (see also Smith (1993)). In
other words, the notion of absurdity ⊥ in our system behaves computationally
differently than Kleene-Aczel’s absurdity ⊥S (defined as 0 = 1) assumed in the
original definition of slash computability relation. While in our system there is
no proof object t of type ⊥ that could be computable, in Kleene-Aczel’s system
a proof object t of type ⊥S is computable whenever t : ⊥S is derivable, i.e.,
whenever we have inconsistent premises.

However, given these considerations, a workaround can be devised: let us
introduce an alternative specification of absurdity, denoted ⊥A, that can be
proven only in inconsistent contexts, thus mimicking ⊥S . In contrast to ⊥,
⊥A has no associated rules, specifically, no elimination rule, i.e., no ex falso
quodlibet. From this perspective, it might be reminiscent of absurdity from
minimal logic, however, the effect of the missing elimination rule is achieved
by adopting axioms of the form ⊥A → p for atomic formulas p. Then, any
formula can be derived from ⊥A via these axioms and introduction rules, so
the logical strength of the system remains unchanged,26 only a computational
interpretation of absurdity is modified. And it is this change that allows us to
include absurdity in the definition of Harrop formulas (so the clause (a) from
Section 2.1 would read “any atomic formula and ⊥A is a Harrop formula”) and
its computational behavior will mirror the behavior of ⊥S (see clause 2 in the
definition below). Now, let us proceed to define the slash computability relation.

For a propositional fragment of CTT, the slash computability relation Γ | t :
A, read as “Γ slashes t : A”, can be inductively defined by the following clauses
(see Smith (1993) for a definition of slash relation for full CTT):

1. Γ | t : Xi if Γ ⊢ t : Xi, i = 1, 2, . . . (Xi is an atomic formula),

2. Γ | t : ⊥A if Γ ⊢ t : ⊥A.27

3. Γ | t : A ∧ B if Γ ⊢ t : A ∧ B and Γ ⊢ t = (a, b) : A ∧ B and there exist
proof objects a and b such that Γ | a : A and Γ | b : B,

4. Γ | t : A ∨ B if Γ ⊢ t : A ∨ B and Γ ⊢ t = inl(a) : A ∨ B for some proof
object a such that Γ | a : A or Γ ⊢ t = inr(b) : A∨B for some proof object
b such that Γ | b : B,

5. Γ | t : A → B if Γ ⊢ t : A → B and Γ ⊢ t = λx.b(x) : A → B and there
exists a proof object b(x) such that Γ, x : A ⊢ b(x) : B and for all proof
objects a, Γ | a : A implies Γ | b(a) : B.

26This method is inspired by Goad (1980).
27Smith (1993) uses here the absurdity ⊥M of minimal logic which differes from ⊥ in that

it does not have elimination rule. Our ⊥A also does not have elimination rule, however, it
does not lead to minimal logic since we adopt the axioms of the form ⊥A → p. Note that if
we were to adopt ⊥ instead of ⊥A, the clause 2 would read “Γ | t : ⊥ does not hold for any
proof object t”.

21

Informally, Γ | t : A can be read as “a proof object t of type A is computable in
context Γ”.

Now, the first important result for showing how to compute open proof ob-
jects ranging over Harrop formulas to canonical values is the following theorem:

Theorem 1 (Theorem 3 in Smith (1993), p. 195). If C is a Harrop formula in
the context Γ then there exists a proof object h(z) such that Γ, z : C | h(z) : C.
The proof object h(z) can be recursively constructed as follows:28

(i) Γ, x : Xi | x : X1, i = 1, 2 . . .,

(ii) Γ, x : ⊥A | x : ⊥A,

(iii) if Γ, x : A | a(x) : A and Γ, x : A, y : B | b(x, y) : B then Γ, z : A ∧ B |
(a(fst(z)), b(fst(z), snd(z))) : A ∧B,29

(iv) if Γ, x : A, y : B | b(x, y) : B then Γ, z : A → B | λx.b(x, ap(z, x)) : A → B.

This theorem establishes that we can construct a proof object h(z) for a Har-
rop formula C computable to a canonical form, i.e., value, by only using the
assumption z : C. From this perspective, we can say that a Harrop formula C is
“self-constructable”. In other words, we can essentially trivially prove C from
“itself”, i.e., by using only the assumption z : C.

It is this fact that makes it possible to compute proof objects with “Harrop-
shaped holes” in them, which brings us to the other crucial result (again due to
Smith (1993)) needed for the justification of the typed S rule: specifically, that
we can have open proof objects, i.e., proof terms with free variables ranging over
the Harrop formulas C, computable to a canonical form. This is established by
the following result:

Corollary 1 (Smith (1993), p. 196). Let C be a Harrop formula and let
h(z) be constructed according to the corresponding clauses in Theorem 1. If
z : C ⊢ b(z) : B then there exists a proof object in a canonical form, i.e., a value
v(z) of the formula B such that z : C ⊢ b(h(z)) = v(z) : B.

Note. Observe that we do not need to consider the computational interpretation
of open proof objects in general, just of those open proof objects whose free
variables range over Harrop formulas and thus are computationally irrelevant,
i.e., they have no computational content.30 Consequently, the effect of the
adoption of this kind of open proof objects on notions such as canonical proofs
or computation rules is limited although not insignificant. For example, the
modified kind of hypothetical judgments restricted to Harrop assumptions, such
as those in Corollary 1, requires the inclusion of specific forms of η-expansion
(see Smith (1993)).

28We present a simplified propositional version of the clauses.
29The functions fst and snd are the selectors for conjunction corresponding to the left and

right elimination rules.
30See the literature on proof extraction, e.g., Berger et al. (2006).

22

Now, let us see how we can complete the justification of the typed S rule.
First, we have observed that Harrop formulas have at most one constructor (=
have no computational content, Observation 1). Then, we have observed that
there is Smith’s type-theoretic translation of Kleene-Aczel’s slash computabil-
ity relation that can be used to specify conditions for proof objects with free
variables ranging over Harrop formulas to be computable to a canonical form
(Observation 2, using Observation 1). And it is this fact that finally allows us
to compute the major premise c(z) : A ∨ B of the S rule. More specifically,
utilizing the Corollary 1 (Smith (1993)), we know that if:

z : C
...

c(z) : A ∨B

then there exists a canonical value v(z) of the type A ∨B such that:

z : C
...

c(h(z)) = v(z) : A ∨B.

And we know that v(z) of A ∨ B has to be either inl(a(z)) or inr(b(z)), which
is what we needed to establish for the computation rules for the selector S
(introduced in Section 4) to work as intended.

B Appendix: Normalization

Smith (1993) proved normalization for Martin-Löf’s constructive type theory
(CTT, Martin-Löf (1984), Nordström et al. (1990)) using a type-theoretic trans-
lation of Kleene-Aczel’s slash computability relation (Kleene (1962), Aczel (1968)).
Specifically, he showed that if a : A can be derived (within the empty context),
then a can be computed to a canonical form, i.e., a value of the type A. The
overall structure of the proof follows closely the standard structure of normal-
ization proofs for typed terms using Tait’s reducibility/computability method
(Tait (1967)). In fact, as Smith himself notes, Tait’s computability predicate
CompA(a) can be seen as a special case of the slash computability relation with
the empty context, i.e., | a : A.

Once again, we assume a propositional fragment of CTT with no depen-
dent types containing conjunction, disjunction, implication, and absurdity (no
propositional identity type). The only difference is the alternative formulation
of the “elimination rule” for absurdity (discussed in Appendix A). All the gen-
eral rules, including the substitution rules and judgemental identity rules, are
as defined in Nordström et al. (1990) for intensional theory with decidable type
checking. The judgemental identity a = b : A is understood as definitional
identity (Martin-Löf (1984)). As usual, introduction rules for logical constants
describe what are the canonical forms, i.e., values. Computation rules are ter-
minating with a value v as soon as the outermost form of v is a canonical form
(= lazy evaluation).

23

We will not reproduce here, however, the whole normalization proof, we only
show that its key ingredient Theorem 2:

Theorem 2. Let ∆ be a context x1 : T1, . . . , xm : Tm and t1, . . . , tm proof
objects such that Γ | ti : Ti, 0 < i ≤ m. Then ∆ ⊢ a(x⃗) : A implies Γ | a(⃗t) : A.

where x⃗ = x1, . . . , xm and t⃗ = t1, . . . , tm, holds in a propositional fragment of
CTT extended with the typed S rule.

Theorem 2 together with Corollary 2:

Corollary 2. If Γ | a : A, then there exists a canonical proof object, i.e., a
value v of type A, such that Γ ⊢ a = v : A.

which follows from the definition of slash computability relation Γ | t : A, then
give the normalization result (for details, see Smith (1993)).

The type-theoretic version of the S rule for a propositional fragment of CTT
is as follows (where C is a Harrop formula):

∆, z : C ⊢ c(x⃗, z) : A ∨B

∆, x : C → A ⊢ d(x⃗, x) : D

∆, y : C → A ⊢ e(x⃗, y) : D

∆ ⊢ S(z.c(x⃗, z), x.d(x⃗, x), y.e(x⃗, y)) : D

Computation rules:

• split left: S(z.inl(a(z)), x.d, y.e) = d(λz.a(z)) : D

• split right: S(z.inr(b(z)), x.d, y.e) = e(λz.b(z)) : D

Proof of Theorem 2. By induction on the structure of the derivation ∆ ⊢ a : A
(together with Lemmas 1 and 2, see below). As mentioned above, we show
only the case for the new typed rule S, i.e., the selector S. The presentation
of the proof itself follows Smith (1993)’s treatment of the elimination rule for
disjoint union/disjunction to make the differences between selectors S and D
more apparent.

By induction hypothesis we obtain:

(1) Γ | c(⃗t, z) : A ∨B for all z such that Γ | z : C

(2) Γ | d(⃗t, λz.a(z)) : D for all λz.a(z) such that Γ | λz.a(z) : C → A

(3) Γ | e(⃗t, λz.b(z)) : D for all λz.b(z) such that Γ | λz.b(z) : C → B

From (1) we get via the definition of slash computability relation | either:

24

(4) Γ ⊢ c(⃗t, z) = inl(a(z)) : A ∨ B for some term a(z) such that Γ, z : C |
a(z) : A. Γ, z : C | a(z) : A implies Γ, z : C ⊢ a(z) : A. Furthermore, since
C is a Harrop formula we can obtain, via Corollary 4 (Smith (1993)),
that Γ, z : C ⊢ a(c(z)) = v(z) : A, i.e., that a(c(z)) of type A can be
computed to a canonical value even if it contains free variables, as long
as those variables range over Harrop formulas. The proof object c(z) : C
is recursively constructed from the assumption z : C as shown in Smith
(1993), Theorem 3.

(5) Analogously to (4).

Let us assume that (4) holds and continue by case analysis. By definition of S,
we get:

(6) Γ ⊢ S(z.inl(a(z))), x.d(⃗t, x), y.e(⃗t, y) = d(⃗t, λz.a(z)) : D

Before we can put together (2) and (4) to obtain (7), we need to check that
Γ | λz.a(z) : C → A. We proceed accordingly to the definition of slash | for
→ type (see above). First, (i) and (ii) are fulfilled since from (4), we have
Γ, z : C ⊢ a(z) : A and from that, via →I, we get Γ ⊢ λz.a(z) : C → A. As for
(iii), there is a proof object a(z) such that Γ, z : C ⊢ a(z) : A, we just need to
show that for all proof object c, Γ | c : C implies Γ | ap(a, c) : A.

Let us begin by assuming Γ | c : C. From this it follows via Corollary 1
(Smith (1993)) that Γ ⊢ c = v : C. Thus, we also get Γ | v : C (by Lemma 1).
Now, we want to show that Γ | ap(a, c), i.e., Γ | ap(λz.a(z), c). By induction
hypothesis instantiated with the help of Γ | v : C, we get Γ | a(v) : A. And
since we know that ap(λz.a(z), c) = a(c), we also get that ap(λz.a(z), c) = a(v).
And from that, we can finally obtain (via Lemma 1) Γ | ap(λz.a(z), c) which is
what we wanted to show.

(7) Γ | d(⃗t, λz.inl(a(z))) : D

From (6) and (7) we obtain via Lemma 1:

(8) Γ | S(z.inl(a(z))), x.d(⃗t, x), y.e(⃗t, y) : D

And from (4) and (8) and Lemma 2 we get the required:

(8) Γ | S(z.c(⃗t, z), x.d(⃗t, x), y.e(⃗t, y)) : D.

Lemma 1 (Smith (1993)). Let Γ | a : A and Γ ⊢ b : A, then Γ ⊢ a = b : A
implies Γ | b : A.

Proof. Follows from the definition of slash |. We demonstrate the case for
disjunction A ∨B.

Let us assume Γ | c : A∨B, Γ ⊢ c′ : A∨B, and Γ ⊢ c = c′ : A∨B. We want
to show that Γ | c′ : A ∨ B. By the definition of slash relation for disjunction,

25

we need to show that Γ ⊢ c′ : A∨B (by assumption) and we need to show that
Γ ⊢ c′ = inl(a′) for some a′ such that Γ | a′ : A or that Γ ⊢ c′ = inr(b′) for some
b′ such that Γ | b′ : B. Let us assume the first case.

Now, since we have Γ | c : A∨B (by assumption), this means we have either
Γ | a : A or Γ | b : B (by the definition of slash relation for disjunction), i.e.,
that Γ ⊢ c = inl(a) : A ∨ B or Γ ⊢ c = inr(b) : A ∨ B. Let us again assume the
first case. Since we have assumed that c = c′, this means that inl(a) = inl(a′),
and thus we have found c′ = inl(a) for a such that Γ | a : A ∨ B and we can
claim Γ | c′ : A ∨B.

The second case proceeds analogously.

Lemma 2 (Smith (1993)). Let Γ | a : A and let B be a type in the context Γ,
then Γ ⊢ A = B implies Γ | a : B.

Proof. By induction on the structure of the type A. We demonstrate the case
for disjunction A ∨B.

Let us assume Γ | c : A ∨ B, Γ ⊢ C ∨ D type, and Γ ⊢ A ∨ B = C ∨ D,
and show that Γ | c : C ∨ D. First, Γ | c : A ∨ B implies Γ ⊢ c : A ∨ B and
from that and Γ ⊢ A ∨ B = C ∨D we can conclude that Γ ⊢ c : C ∨D. Now,
we just need to show that Γ ⊢ c = inl(a) : C ∨ D for some term a such that
Γ | a : C or that Γ ⊢ c = inr(b) : C ∨D for some term b such that Γ | b : D. Let
us consider only the first case, as the second one proceeds analogously. From
Γ | c : A ∨ B (by assumption) we can get (via the definition of slash relation)
that either Γ ⊢ c = inl(a) : A ∨ B for some term a such that Γ | a : A or that
Γ ⊢ c = inr(b) : A ∨ B for some term b such that Γ | b : B. Let us consider
the first case. From Γ ⊢ c = inl(a) : A ∨ B and Γ ⊢ A ∨ B = C ∨ D, we can
conclude that Γ ⊢ c = inl(a) : C ∨D for some a such that Γ | a : C, and thus
get Γ | c : C ∨D, which is what we wanted.

Funding. This paper is an outcome of the project Logical Structure of Infor-
mation Channels, no. 21-23610M, supported by the Czech Science Foundation
and realized at the Institute of Philosophy of the Czech Academy of Sciences.

Acknowledgments. I would like to thank Antonio Piccolomini d’Aragona,
Sara Ayhan, Ansten Klev, Will Stafford, and Vı́t Punčochář for their most
helpful notes on earlier versions of this paper. I would also like to thank the
two anonymous referees for their helpful comments and the audiences of the
35th Logica symposium (The Premonstratensian Monastery of Teplá, 2022),
the Seminar on Applied Mathematical Logic (Institute of Computer Science,
Czech Academy of Sciences, 2023), and of the 14th Tbilisi Symposium on Logic,
Language and Computation (TbiLLC, Telavi, 2023) where earlier versions of
this paper were presented and discussed.

References

Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied
Logic, 51(1-2):1–77, 1991. 10.1016/0168-0072(91)90065-T.

26

Peter Aczel. Saturated intuitionistic theories. In H. A. Schmidt, K. Schütte,
and H. J. Thiele, editors, Contributions to Mathematical Logic, pages 1–11.
North-Holland, Amsterdam, 1968.

Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg.
Program extraction from normalization proofs. Studia Logica, 82(1):25–49,
2006. 10.1007/S11225-006-6604-5.

Ivano Ciardelli, Rosalie Iemhoff, and Fan Yang. Questions and dependency in
intuitionistic logic. Notre Dame Journal of Formal Logic, 61(1):75–115, 2020.
10.1215/00294527-2019-0033.

Andrea Condoluci and Matteo Manighetti. Admissible tools in the kitchen of
intuitionistic logic. In Electronic Proceedings in Theoretical Computer Sci-
ence, EPTCS, volume 281, pages 10–23, Waterloo, 2018. Open Publishing
Association. 10.4204/EPTCS.281.2.

Haskell Curry and Robert Feys. Combinatory Logic. Combinatory Logic. North-
Holland, Amsterdam, 1958.

Wagner de Campos Sanz, Thomas Piecha, and Peter Schroeder-Heister. Con-
structive semantics, admissibility of rules and the validity of Peirce’s law.
Logic Journal of the IGPL, 22(2):297–308, 2014. 10.1093/JIGPAL/JZT029.

Michael Dummett. A propositional calculus with denumerable matrix. Journal
of Symbolic Logic, 24(2):97–106, 1959. 10.2307/2964753.

Michael Dummett. The Logical Basis of Metaphysics. Duckworth, London,
1991.

J. Michael Dunn and Robert K. Meyer. Algebraic completeness results for
Dummett’s LC and its extensions. Mathematical Logic Quarterly, 17(1):225–
230, 1971. 10.1002/MALQ.19710170126.

Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematis-
che Zeitschrift, 39(1):176–210, 1935. 10.1007/BF01201353.

Gerhard Gentzen. The Collected Papers of Gerhard Gentzen. Studies in logic
and the foundations of mathematics. North-Holland, Amsterdam, 1969.

Christopher Alan Goad. Computational Uses of the Manipulation of Formal
Proofs. PhD thesis, Stanford University, Stanford, 1980.

Kurt Gödel. Zum intuitionistischen Aussagenkalkül. Anzeiger Akademie der
Wissenschaften Wien, Math.-naturwissensch. Klasse, (69):65–66, 1932.

Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.

Ronald Harrop. On disjunctions and existential statements in intuitionistic
systems of logic. Mathematische Annalen, 132(4):347–361, 1956. 10.1007/
BF01360048/METRICS.

27

Ronald Harrop. Concerning formulas of the types A→BvC, A→(Ex)B(x) in
intuitionistic formal systems. Journal of Symbolic Logic, 25(1):27–32, 1960.
10.2307/2964334.

Susumu Hayashi and Hiroshi Nakano. PX: A Computational Logic. MIT Press,
Cambridge, MA, 1988.

William Alvin Howard. The formulae-as-types notion of construction. In
Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin, editors, To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism.
Academic Press, London, 1980.

Rosalie Iemhoff. On the admissible rules of intuitionistic propositional logic.
Journal of Symbolic Logic, 66(1):281–294, 2001. 10.2307/2694922.

Rosalie Iemhoff. Intermediate logics and Visser’s rules. Notre Dame Journal of
Formal Logic, 46(1):65–81, 2005. 10.1305/NDJFL/1107220674.

Stephen C. Kleene. On the interpretation of intuitionistic number theory. Jour-
nal of Symbolic Logic, 10(4):109–124, 1945. 10.2307/2269016.

Stephen C. Kleene. Disjunction and existence under implication in elementary
intuitionistic formalisms. Journal of Symbolic Logic, 27(1):11–18, 1962. 10.
2307/2963675.

Georg Kreisel and Hilary Putnam. Unableitbarkeitsbeweismethode für den
Intuitionistischen Aussagenkalkül. Zeitschrift für Mathematische Logik and
Grundlagen der Mathematik, (3):74–78, 1957.

Jan Lukasiewicz. On the intuionistic theory of deduction. Indagationes Mathe-
maticae, (14):202–212, 1952.

Paolo Mancosu, Sergio Galvan, and Richard Zach. An Introduction to Proof
Theory: Normalization, Cut-Elimination, and Consistency Proofs. Oxford
University Press, Oxford, 2021.

Per Martin-Löf. Intuitionistic Type Theory: Notes by Giovanni Sambin of a
series of lectures given in Padua, June 1980. Bibliopolis, Napoli, 1984.

Pierluigi Minari and Andrzej Wronski. The property (HD) in intermediate
logics: a partial solution of a problem of H. Ono. Reports on Mathematical
Logic, (22):21–25, 1988.

Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University
Press, Cambridge, 2001.

Nikolai N. Nepeivoda. Logical Approach to Programming. In L. Jonathan Co-
hen, Jerzy Loś, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Logic,
Methodology and Philosophy of Science VI. Proceedings of the Sixth Interna-
tional Congress of Logic, Methodology and Philosophy of Science, volume 104,
pages 109–122. Elsevier, Amsterdam, 1982. 10.1016/S0049-237X(09)70185-5.

28

Nikolai Nikolaevich Nepeivoda. A relation between the natural deduction rules
and operators of higher level algorithmic languages. Doklady Akademii Nauk
SSSR, 239(3):526–529, 1978.

Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf ’s type theory: an introduction. Clarendon Press, Oxford, 1990.

Ivo Pezlar. A note on paradoxical propositions from an inferential point of view.
In Martin Blicha and Igor Sedlár, editors, The Logica Yearbook 2020, pages
183–199, London, 2021. College Publications.

Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal
type theory. Proceedings - Symposium on Logic in Computer Science, pages
221–230, 2001. 10.1109/LICS.2001.932499.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, 2001. 10.1017/
S0960129501003322.

Antonio Piccolomini d’Aragona. A note on schematic validity and completeness
in Prawitz’s semantics. In F. Bianchini, V. Fano, and P. Graziani, editors,
Current Topics in Logic and the Philosophy of Science. Papers from SILFS
2022 conference, London, 2024. College Publications.

Thomas Piecha, Wagner de Campos Sanz, and Peter Schroeder-Heister. Failure
of completeness in proof-theoretic semantics. Journal of Philosophical Logic,
44(3):321–335, 2014. 10.1007/S10992-014-9322-X.

Valery Plisko. A survey of propositional realizability logic. Bulletin of Symbolic
Logic, 15(1):1–42, 2009. 10.2178/BSL/1231081768.

Dag Prawitz. Natural Deduction: A Proof-theoretical Study. Almqvist & Wik-
sell, Stockholm, reprinted edition, 1965.

Dag Prawitz. Ideas and results in proof theory. In Jens Erik Fenstad, editor,
Proceedings of the second scandinavian logic symposium. Studies in logic and
the foundations of mathematics, pages 235–307. North-Holland Publishing
Company, 1971.

Dag Prawitz. Towards a foundation of a general proof theory. In P. Suppes,
L. Henkin, A. Joja, and G. C. Moisil, editors, Proceedings of the Fourth
International Congress for Logic, Methodology and Philosophy of Science,
Bucharest, 1971, pages 225–250. North-Holland Publishing Company, 1973.

Arthur Prior. The runabout inference ticket. Analysis, 21(1):38–39, 1960. 10.
1093/analys/21.2.38.

Tadeusz Prucnal. On two problems of Harvey Friedman. Studia Logica, (38):
257–262, 1979.

29

Vı́t Punčochář. A generalization of inquisitive semantics. Journal of Philosoph-
ical Logic, 45(4):399–428, 2016. 10.1007/S10992-015-9379-1.

Helena Rasiowa. Constructive theories. Bulletin de l’Academie polonaise des
sciences. Serie des sciences mathematiques, astronomiques, et physiques, 2:
121–124, 1954.

Paul Roziére. Admissible and derivable rules in intuitionistic logic. Math-
ematical Structures in Computer Science, 3(2):129–136, 1993. 10.1017/
S0960129500000165.

James Toshio Sasaki. Extracting Efficient Code From Constructive Proofs. PhD
thesis, Cornell University, Ithaca, 1986.

Peter Schroeder-Heister. Validity concepts in proof-theoretic semantics. Syn-
these, 148(3):525–571, 2006. 10.1007/s11229-004-6296-1.

Peter Schroeder-Heister. Generalized elimination inferences, higher-level rules,
and the implications-as-rules interpretation of the sequent calculus. In
Luiz Carlos Pereira, Edward Hermann Haeusler, and Valeria de Paiva, editors,
Advances in Natural Deduction, volume 39, pages 1–29. Springer, Dordrecht,
2014. 10.1007/978-94-007-7548-0 1.

Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations. Cam-
bridge University Press, Cambridge, 2012. 10.1017/CBO9781139031905.

Jan Smith. An Interpretation of Kleene’s Slash in Type Theory. In Gerard Huet
and Gordon Plotkin, editors, Logical Environments, pages 189–197. Cam-
bridge University Press, Cambridge, 1993.

Will Stafford. Proof-theoretic semantics and inquisitive logic. Journal of Philo-
sophical Logic, 50(5):1199–1229, 2021. 10.1007/S10992-021-09596-7.

William Walker Tait. Intensional interpretations of functionals of finite type I.
Journal Symbolic Logic, 32(2):198–212, 1967.

Neil Tennant. Natural Logic. Edinburgh University Press, Edinburgh, 1978.

Luca Tranchini. Proof, meaning and paradox: some remarks. Topoi, 38(3):
591–603, 2019. 10.1007/s11245-018-9552-6.

Anne S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer, Berlin,
1973. 10.1007/BFB0066739.

Guo-Qiang Zhang. Logic of Domains. Birkhäuser, Boston, MA, 1991. 10.1007/
978-1-4612-0445-9.

30

	Introduction
	Preliminaries
	Harrop formulas and uniform substitution
	Introduction and elimination rules
	Formulas-as-types interpretation

	Generalizing the Split rule
	The Split rule
	The Split rule and the S rule
	Justification of the Split rule

	Formulas as types: Typing the S rule
	Conclusion
	Appendix: Open proof objects computable to canonical forms
	Appendix: Normalization

