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Abstract Proofs from assumptions are amongst the most fundamental reasoning
techniques. Yet the precise nature of assumptions is still an open topic. One of the
most prominent conceptions is the placeholder view of assumptions generally associ-
ated with natural deduction for intuitionistic propositional logic. It views assumptions
essentially as holes in proofs, either to be filled with closed proofs of the correspond-
ing propositions via substitution or withdrawn as a side effect of some rule, thus in
effect making them an auxiliary notion subservient to proper propositions. The Curry-
Howard correspondence is typically viewed as a formal counterpart of this concep-
tion. I will argue against this position and show that even though the Curry-Howard
correspondence typically accommodates the placeholder view of assumptions, it is
rather a matter of choice, not a necessity, and that another more assumption-friendly
view can be adopted.
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1 Introduction

Proofs from assumptions are amongst the most fundamental reasoning techniques.
Yet the precise nature of assumptions is still an open topic. One of the most prominent
conceptions is the placeholder view of assumptions generally associated with natural
deduction for intuitionistic propositional logic. It views assumptions essentially as
holes in proofs (either to be filled with closed proofs of the corresponding proposi-
tions via substitution or withdrawn as a side effect of some rule), thus in effect making
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them an auxiliary notion subservient to proper propositions. The Curry-Howard cor-
respondence is typically viewed as a formal counterpart of this conception (recently,
see, e.g., Schroeder-Heister (2016)). I will argue against this position and show that
even though the Curry-Howard correspondence typically accommodates the place-
holder view of assumptions, it is rather a matter of choice, not a necessity, and that
another more assumption-friendly view can be adopted.

This paper is structured as follows: In the first section (Section 1.1), I will briefly
introduce assumption withdrawing rules, specifically the implication introduction
rule and examine its Curry-Howard correspondence interpretation. In the second sec-
tion (Section 1.2) I will present Schroeder-Heister’s comments about the placeholder
view of assumptions and the Curry-Howard correspondence. In the final section (Sec-
tion 1.3), I will introduce and formalize an alternative view of assumptions that treats
them not as placeholders but rather as domains of functions that capture derivations
from assumptions.

1.1 Assumption withdrawing

The rule for implication introduction from natural deduction for intuitionistic propo-
sitional logic is arguably the best-known example of the assumption withdrawing
rule:1

[A]
...
B

A⊃ B

It prescribes the following inference step: if we can derive B from assumption A,
then we can derive A ⊃ B and withdraw the initial assumption A (it is worth noting
that other assumptions than A may be used in deriving B and those remain open
after discharging A). Note that this rule effectively embodies the deduction theorem
from standard axiomatic systems. In other words, the implication introduction rules
is internalizing structural information from the proof level (“B is derivable from A”)
to the propositional level (“A implies B”).2

The problematic aspect of this and other assumption withdrawing rules stems
from the fact that it behaves differently from the non-assumption withdrawing rules.
More specifically, with implication introduction rule we are deriving the proposition
A ⊃ B not from other propositions as with other standard rules (e.g., conjunction
introduction), but from a hypothetical proof. To put it differently, the inference step

1 Assumption (hypothesis, supposition) withdrawing rules first appeared in the works of Gentzen (1935)
and Jaśkowski (1934). It is important to emphasize that we are not really interested in the implication in-
troduction rule itself only insofar as it is an assumption withdrawing rule. Other assumption withdrawing
rules from intuitionistic propositional logic such as, e.g., disjunction elimination rule or negation introduc-
tion rule, would be suitable for our analysis as well. I only choose to start with the implication introduction
rule for its familiarity. I will return to this issue later in section 2.

2 Schroeder-Heister (2016) describes this as a two-layer system. Note that, strictly speaking, the as-
sumptions are not really withdrawn, they are rather incorporated into the propositional level in the form of
an antecedent.
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validated by the implication introduction takes us from a derivation starting with a
hypothesis to a proposition, not just from propositions to another proposition as do
rules without assumptions.3

For example, consider the following simple proof of the theorem A⊃ ((A⊃ B)⊃
B) of propositional logic:

[A⊃ B]1 [A]2
⊃E

B ⊃I1
(A⊃ B)⊃ B

⊃I2
A⊃ ((A⊃ B)⊃ B)

We start by making two assumptions A⊃ B and A. Applying the implication elimina-
tion rule (modus ponens) we derive B. What follows are two consecutive applications
of implication introduction rule, first withdrawing the assumption A ⊃ B, the sec-
ond withdrawing the assumption B. Note that it is the fact that B is derivable from
A ⊃ B together with A that warrants the application of the implication introduction
rule and the derivation of the corresponding proposition (A⊃ B)⊃ B, at that moment
still depending on the assumption A. Analogously with the second application of the
implication introduction rule that withdraws this remaining assumption.

A proof that relies on no assumptions is called a closed proof. If a proof depends
on some assumptions that are yet to be withdrawn (i.e., open/active assumptions) it is
called an open proof. For example, our derivation of A⊃ ((A⊃ B)⊃ B) constitutes a
closed proof, since both assumption were withdrawn in the course of the derivation.
Assuming we would not carried out the last inference step, we would get an open
proof:

[A⊃ B]1 A
⊃E

B ⊃I1
(A⊃ B)⊃ B

since the assumption A, upon which the derivation ((A ⊃ B) ⊃ B) depends, is still
active.

Closed proofs are usually preferred to open ones for the simple reason that closed
proofs are generally viewed as the fundamental notion in standard proof-theoretic
systems. From this perspective, assumptions are just temporary holes in the proof that
are preventing us from reaching a closed proof. These open holes can be are either
completely discarded via assumption withdrawing rules or filled in with other already
closed proofs via substitution. This is the reason why Schroeder-Heister (2016) and
others4 call this the placeholder view of assumptions: active assumptions are just
auxiliary artefacts of the employed proof system that behave differently than proper
propositions, i.e., propositions that do not appear as assumptions.

3 This non-standard behaviour is also the reason why Prawitz (1965) describes assumption withdrawing
rules as improper rules and introduces the distinction between inference rules and deductions rules. For
more, see Prawitz (1965), Pezlar (2014).

4 See, e.g., Francez (2015), Oliveira (2019).
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Sidenote. Although the adoption of assumption withdrawing rules is the current “in-
dustry standard”, by no means is it the only option. Most notably, Frege was strongly
against the whole idea of reasoning from hypotheses (see, e.g., Frege (1991), p.
335), similarly also Tichý (1988). Schroeder-Heister (2016) (p. 256) calls it the no-
assumptions view.5 Alternatives usually lie in either supplying non-proof-theoretic
explanations of implication connective or by adopting sequent-style proof calculus,
where assumption withdrawing does not occur (or at least not in the same sense as
with natural deduction).

1.1.1 The Curry-Howard correspondence

The placeholder view of assumptions is also supported to a large extent by the Curry-
Howard correspondence in its basic form which links typed lambda calculus and im-
plicational fragment of intuitionistic propositional logic.6 Under this correspondence,
natural deduction assumptions correspond to free variables of lambda calculus, which
fits well with the interpretation of assumptions as open holes in the proof.

For example, assuming only the implicational fragment of intuitionistic proposi-
tional natural deduction, we get the following correspondences between the proposi-
tional and functional dimensions of the Curry-Howard correspondence:

NATURAL DEDUCTION LAMBDA CALCULUS

assumption free variable
implication introduction function abstraction
implication elimination function application

Under this correspondence, the implication introduction rule will then look as fol-
lows:

[x : A]
...

b(x) : B

λx.b(x) : A⊃ B

Note that the act of withdrawing the assumption A corresponds to λ -binding of the
free variable x. The whole proof of the theorem A ⊃ ((A ⊃ B)⊃ B) would then pro-
ceed in the following way:

[x : A⊃ B]1 [y : A]2
⊃E

xy : B
⊃I1

λx.xy : (A⊃ B)⊃ B
⊃I2

λy.λx.xy : A⊃ ((A⊃ B)⊃ B)
5 However, it is worth noting that even with Frege the situation is not straighforward, as one of the

reviewers pointed out. Recently, Schroeder-Heister (2016) (p. 257, footnote) noted that there is a “hidden
two-layer system” of assumptions and assertions in the background of Frege’s system as well. See also
Schroeder-Heister (2014).

6 See, e.g., Sørensen and Urzyczyn (2006).
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with the concluding proof object (closed term) λy.λx.xy with no free variables repre-
senting the final closed proof with no active assumptions. In contrast, the open proof
discussed earlier:

[x : A⊃ B]1 y : A
⊃E

xy : B
⊃I1

λx.xy : (A⊃ B)⊃ B

concludes with the proof object λx.xy that still contains the free variable y corre-
sponding to the yet to be withdrawn assumption A.

1.2 The placeholder view of assumptions

The Curry-Howard correspondence is generally viewed as incorporating the place-
holder view of assumptions. Probably most recently, this point was explicitly made
in Schroeder-Heister (2016):

A formal counterpart of [the placeholder view of assumptions] is the Curry-Howard correspon-
dence, in which open assumptions are represented by free term variables, corresponding to the
function of variables to indicate open places. (Schroeder-Heister (2016), p. 255)

and in Schroeder-Heister (2012) he adds:

The lambda calculus view and the corresponding Curry-Howard-interpretation actually incorpo-
rates the placeholder view of assumptions by always using a variable to represent the ground for
an assumption, which by means of substitution can be filled with a term standing for a closed
proof of it. (Schroeder-Heister (2012), p. 939)

Furthermore, in the same paper Schroeder-Heister advocates for a more general
concept of inference that takes us not from propositions to other propositions, but
from (inferential) consequence statements A |= B to other consequence statements in
order to – amongst other things – equalize the status of assumptions and assertions.
The general form of inference rules is the following:7

A1 |= B1 . . . An |= Bn

C |= D

where the antecedents can be empty. As he explains:

This corresponds to the idea that in natural deduction, derivations can depend on assumptions.
Here this dependency is expressed by non-empty antecedents, as is the procedure of the sequent
calculus. Our model of inference is the sequent-calculus model. . . (Schroeder-Heister (2012), p.
938)

7 As one of the reviewers correctly noted, this general form of inference rules can be achieved in stan-
dard natural deduction with sequent-style (also known as logistic) presentation as well. I agree, however,
it would still rely on the same Curry-Howard correspondence and thus kept viewing assumptions as place-
holders, which I wish to avoid. In other words, I want to move from x : A ` b(x) : B, where x is a ground
for A and b(x) is a ground for B, towards f : A ` B, where f is a ground for the whole derivation from A to
B. For more, see below.
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To show that this rule is correct, we have demonstrate that given the grounds for
the premises (denoted as g : A |= B) we can construct grounds for the conclusion. In
other words, the grounds of the conclusion have to contain some operation f trans-
forming the grounds for the premises to the grounds for the conclusion. Schemati-
cally:

g1 : A1 |= B1 . . . gn : An |= Bn

f (g1, . . .gn) : C |= D

Schroeder-Heister comments on this rule as follows:

. . . [H]andling of grounds in the sense described is different from that of terms in the typed lambda
calculus. When generating grounds from grounds according to [the rule immediately above], we
consider grounds for whole sequents, whereas in the typed lambda calculus terms representing
such grounds are handled within sequents. So the notation g : A |= B we used above, which
is understood as g : (A |= B), differs from the lambda calculus notation x : A ` t : B, where t
represents a proof of B from A and the declaration x : A on the left side represents the assumption
A. (Schroeder-Heister (2012), p. 939)

However, it should be mentioned that he left it “open how to formalize grounds and
their handling.” (ibid., p. 938)

I will argue that even though lambda calculus with the Curry-Howard interpreta-
tion can be seen as embodying the placeholder view of assumptions in the intuition-
istic propositional logic, within the family of Curry-Howard correspondence based
systems we can consider a generalized approach that is free of this view. In other
words, I will argue that the Curry-Howard correspondence is not necessarily the for-
mal counterpart of the placeholder view of assumptions, which is generally associ-
ated with natural deduction for intuitionistic propositional logic. Furthermore, I will
also argue that it can be used for formalizing and handling grounds for the whole
consequence statements as discussed in the quote above.

1.3 Function-based approach to assumptions

Let us return to the implication introduction rule:

[x : A]
...

b(x) : B

λx.b(x) : A⊃ B

Adopting the sequent-style notation for natural deduction,8 we can rewrite this rule
as follows:

x : A ` b(x) : B
` λx.b(x) : A⊃ B

8 See, e.g., Gentzen’s system NLK, discussed in von Plato (2012).
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where the symbol ` is used to separate assumptions from (derived) propositions.
First, note that the premise x : A ` b(x) : B for this rule is a hypothetical judgment

(or consequence statement to use Schroeder-Heister’s terminology) claiming that we
can derive B under the assumption A. In other words, the premise is a derivability
statement, which immediately addresses the problematic aspect of implication intro-
duction rule discussed at the beginning: no longer are we deriving a proposition from
a derivation but rather one derivability statement from another.

Furthermore, note that the assumption withdrawing is still present, yet it would
be misleading to keep viewing assumptions as placeholders or holes, since now they
are constitutive parts of the derivability statement. In other words, assumptions are
now best regarded not as placeholders, but rather as a context in which the asserted
propositions were made. Yet, even though assumptions are no longer just placehold-
ers, they are still not on equal terms with proper asserted propositions positioned on
the right hand side of the symbol `: assumptions are still represented via variables
and our main goal is to eliminate them from the proof, i.e., to empty the context
of the asserted proposition. In other words, even though the sequent-style presenta-
tion of natural deduction rules is free of some of the criticism from earlier, it still
relies on the same Curry-Howard correspondence with assumptions represented via
free variables. Thus. the placeholder view of assumptions is still present, it is just
less apparent. For the same reason I also omit discussion of linear notations such as
Jaśkowski’s box-style notation (see Jaśkowski (1934)) which inspired the later Fitch-
style notation (see Fitch (1952)). For example, if we compare the structure of their
implication introduction rules, we can see that they still operate in the same general
way by taking a hypothetical derivation of B from A as a premise:9

1. A

2. B

3. A⊃ B

1 A

2 B

3 A⊃ B

Now, let us return to the sequent-style notation and take a closer look at the con-
clusion of the rule:

x : A ` b(x) : B
` λx.b(x) : A⊃ B

Specifically, notice that the derivation of B from A is coded with an abstraction term
from lambda calculus, which means it captures some sort of function. Reasoning
backwards, this should mean that between the assumption (context) and the conclu-
sion (asserted proposition) has to be a relationship that can be understood function-
ally, otherwise, we would have nothing to code via lambda terms. To put it differently,
there has to be some more fundamental notion of function at play that we are coding
through the concrete abstraction term.

We can try to capture this observation via the following rule:

9 The other reason is that formulating the Curry-Howard correspondence for these systems is more
complicated and much less explored (see, e.g., Geuvers and Nederpelt (2004)).
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x : A ` b(x) : B
f : A⇒ B

where f is to be understood as exemplifying the more fundamental notion of a func-
tion that takes us from A to B.10

Note that this rule can be roughly understood as the opposite of the implication
introduction rule that goes in the other direction: while the implication introduction
rule makes the derivation captured via the derivability statement in the premise more
concrete in the form of implication proposition and the corresponding lambda term,
this rule makes the derivation more general in the sense that it is now considered
as a function from A to B. Also notice that assumptions are no longer placeholders
or contexts, but types of arguments for the function f capturing the corresponding
derivation.11 In other words, assumptions now stand equal to proper propositions,
they are not just an auxiliary notion captured via free variables.

Furthermore, capturing derivations in this way allows us to consider grounds for
the whole consequence statements as Schroeder-Heister required, not just grounds
for the conclusions under some assumptions. More specifically, treating consequence
statement A |= B as a function type A⇒ B (in accord with the Curry-Howard corre-
spondence) and a ground g as an object f of this type, we can reformulate the general
rule as follows:

g1 : A1⇒ B1 . . . gn : An⇒ Bn

f (g1, . . .gn) : C⇒ D

As a more concrete example, consider, e.g., the rule for derivation composition.12

In Schroeder-Heister’s notation we get the rule:

g1 : A |= B g2 : B |=C
f (g1,g2) : A |=C

stating that if we have grounds for derivation of B from A and for C from B, then
we can apply some function/operation f to these grounds and obtain grounds for the
derivation of C from A.

With our approach based on functions we can properly explicate this process
by defining what operation has to be used to transform (in a constructive manner)
grounds for premises into the grounds for the conclusion. The key observation is that

10 I will talk more about the differences between λx.b(x) : A ⊃ B and f : A⇒ B later in section 1.3.1.
For now, it suffices to say that λx.b(x) is a function in the sense that it is an element of some cartesian
product type, while f is a function in a more primitive sense as an unsaturated entity awaiting arguments
(see, e.g., Nordström et al (1990), p. 49). Furthermore, the move from A ` B towards A⇒ B should not be
conflated with the move from a n-level turnstile A `n B to a n+1-level turnstile `n+1 (A `n B) considered,
e.g., by Došen (1980) (I thank an anonymous reviewer for bringing this to my attention.) Conceptually, the
main difference is that Došen’s iterating turnstiles grow infinitely “upwards”, while the idea behind A⇒ B
is rather that we are going “downwards” to the more fundamental notion of function behind A ` B.

11 To borrow terminology from category theory, assumptions are now source objects of the whole deriva-
tion/function, with proper propositions being the target objects.

12 As one of the reviewers correctly pointed out, derivation composition is, strictly speaking, not a basic
rule, but a property of natural deduction derivations. Thus the above rule should be rather viewed as an
optional rule justified by the corresponding theorem proving the desired property (see, e.g., Theorem 8.1.4
in Negri et al (2001), p. 171.)
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since derivations are understood as functions, their composition becomes essentially
just the composition of functions. The rule we obtain will be as follows:

g1 : A⇒ B g2 : B⇒C
(g2 ◦g1) : A⇒C

where (g2 ◦g1)(x) : C is defined as g2(g1(x)) : C within the context x : A.
Finally, it is worth reiterating that antecedents of the consequence statements can

be empty. In practice this corresponds to premises that are not hypothetical judg-
ments. For example, while g : A⇒ B denotes a premise where B depends on some
assumption A and f is a function, a : ⇒ A signifies a premise where A does not de-
pend on any assumption and a is not a function.13 If we write a : ⇒ A simply as a : A,
non-assumption withdrawing rules will closely coincide with the standard rules. For

example, the conjunction introduction rule could be captured as a : A b : B
f (a,b) : A∧B

where f is a pairing function.

1.3.1 Formalization

So far, I have treated f : A⇒ B quite informally to mean “ f is a function from A to
B”. In this section, I will provide more specific explication of this kind of statement
utilizing Martin-Löf’s constructive type theory, in both its lower- (see Martin-Löf
(1984)) and higher-order presentations (see Nordström et al (1990), Nordström et al
(2001)).14

Let us start by retracing our steps that led us to the introduction of f : A⇒ B. We
began with implication introduction rule. In constructive type theory, implication is
defined using the dependent function type called Π type, which is cartesian product
of a family of sets.15 It has the following introduction rule:16

x : A ` b(x) : B(x)
λx.b(x) : (Πx : A)B(x)

Now let us assume a scenario where x is not free in B, in other words where B does not
depend on A. Thus we end up with an introduction rule for a non-dependent function
type:

x : A ` b(x) : B
λx.b(x) : (Πx : A)B

13 We are interested in getting rid of the placeholder view of assumptions by capturing assumptions as
arguments of functions which represent the corresponding derivations from these assumptions. That does
not mean that every derivation has to be explainable via functions (of course, it can be done if we assume
non-emptiness of all antecedents).

14 There are, of course, other possible ways to formalize it. If we weren’t limited to the Curry-Howard
correspondence based systems, the most straightforward choice would probably be category theory, or
more precisely categorial proof theory (see Došen (2016), Došen and Petrić (2004)), where f : A⇒ B
would be interpreted simply as a morphism f from A to B.

15 Sets are to be understood in Martin-Löf’s constructive sense.
16 To simplify presentation, I omit the corresponding introduction rule for equal elements of this type.
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where (Πx : A)B becomes the standard function space between A and B, more com-
monly written as A → B. Since constructive type theory is built upon the Curry-
Howard correspondence, we can also view A and B as propositions. Now applying
the Brouwer-Heyting-Kolmogorov proof interpretation of logical constants, specifi-
cally of implication as a function that takes a proof of A and transforms it into a proof
of B, we can see that A→ B can be also interpreted as the implication A⊃ B.

Now, once we have implication defined, let us have a look at the premise for the
corresponding introduction rule:

x : A ` b(x) : B

This is an example of a hypothetical judgment of constructive type theory and it is
easy to see that it mirrors derivability statements discussed earlier. It tells us that we
know b(a) to be a proof of the proposition B assuming we know a to be a proof of
the proposition A and furthermore that b(a) and b(c) are equal proofs of B whenever
a and c are equal proofs of A. To put it differently, the hypothetical judgment x : A `
b(x) : B can be seen as stating that b(x) is a function with domain A and range B.17

This fact, however, cannot be stated directly in the lower-order presentation of
constructive type theory we have been using so far. Thus we move towards the higher-
order presentation, which can be understood as a generalization of the lower-order
presentation using a more primitive notion of type. Amongst other things, higher-
order variant allows us to, e.g., capture whole rules of lower-order presentation via
judgments, explicate meanings of constants such as Π or λ , express the Curry-
Howard correspondence as a definition in the system itself, and most importantly
for our present purpose here, form a higher-order notion of function which can be
used to capture the function hidden behind the hypothetical judgment x : A ` b(x) : B
discussed above.

Higher-order (dependent) function types are formed by the following rule:

α : type x : α ` β : type
(x : α)β : type

where α : type is a higher-order judgment declaring that α is a type. If β does not de-
pend on α , we will write (x : α)β as (α)β . For example, propositional negation ¬ can
understood as a function of type (prop)prop, where prop is the type of propositions.

Objects of type (x : α)β are functions that can be introduced via the rule of ab-
straction:

x : α ` b : β

(x)b : (x : α)β

where the prefix brackets ( ) indicate the abstraction: all free occurrences of x in b
become bound in (x)b. Note that this rules coincides with our preliminary rule for
introducing functions presented earlier.

Now assume we have a derivation of proposition B from proposition A, i.e., x : A`
b : B. Using the above rule, we can now derive the following higher-order judgment:

(x)b : (A)B

17 See Martin-Löf (1984).
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which captures the corresponding derivation. It is easy to see that (x)b : (A)B can be
used to interpret our statement f : A⇒ B, as was required. In other words, (x)b : (A)B
can be understood as a higher-order judgment declaring that we have (potentially
open) derivation of B from A coded via the function (x)b.

For example, the rule for derivation composition can be now formalized as:

f : (A)B g : (B)C
(g◦ f ) : (A)C

where the composition operator ◦ is to be understood as a function of type ((A)B)((B)C)(A)C
assuming A : prop, B : prop, and C : prop.

Analogously, the functional variant of implication introduction rule would be:

f : (A)B
λ ( f ) : A⊃ B

where λ is now a higher-order function (i.e., a function taking as arguments other
functions) applied to f , not just a variable binding symbol.

It is important to emphasize that function type (A)B cannot be conflated with
function type/set A ⊃ B, the most basic reason is that they are inhabited by different
objects: the former by functions, the latter by elements specified by Π -introduction
rule, i.e., objects of the form λx.b(x) (or λ ( f ) in its higher-order presentation) that are
used to code functions, similarly as are sets of ordered pairs used to code functions in
set theory. More generally, the notion of function behind the type A ⊃ B is parasitic
on a more fundamental notion of function behind the type (A)B.18 From the logical
point of view, the main reason we should avoid merging (A)B and A⊃ B is that A in
(A)B is an assumption of derivation, while A in A⊃ B is an antecedent of implication,
hence they are objects of different levels. This is perhaps best illustrated by the fact
that assuming some function f of type (A)B essentially corresponds to assuming the

rule A
B in Schroeder-Heister’s natural deduction with higher-level rules (Schroeder-

Heister (1984)), where even rules can act as assumptions to be discharged.19

Another way to view the difference between these two notions of functions is to
consider their associated notions of function application. Typically, abstraction terms
λx.b(x) are applied to their argument terms via some application function ap (which
is often left implicit), thus we obtain ap(λx.b(x),a). However, it is easy to see that
ap(λx.b(x),a) itself relies on a more primitive notion of application of ap to λx.b(x)
and a. And it is this more fundamental notion of application that is associated with
functions of type (A)B:20

f : (A)B a : A
f (a) : B

18 I thank Ansten Klev for making me aware of this issue. See also Klev (2019a), Klev (2019b).
19 I would like to thank one of the reviewers for this remark.
20 See, e.g., Nordström et al (1990), p. 143, Klev (2019a), pp. 286-287
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Furthermore, note that on the functional approach the priority of categorical vs.
hypothetical21 is reversed: the notion of closed proof becomes conceptually sec-
ondary to the notion of hypothetical proof (derivation from assumption(s)), because
the notion of function behind objects inhabiting A⊃ B is derived from the more fun-
damental notion of the function behind the objects inhabiting (A)B.

2 Beyond implication

So far, we have been discussing the alternative to the placeholder view of assump-
tion only in the implicational fragment of intuitionistic propositional logic. But what
has been said about the implication introduction rule – which is arguably naturally
related to functions via the Curry-Howard correspondence – I believe applies to other
assumption withdrawing rules as well. Recall that we were not really interested in
the rule itself, but in the nature of its hypothetical premise which seems to be shared
across other assumption discharging rules not only from intuitionistic propositional
logic but classical propositional logic as well.

To show this I provide two more analyses of assumption withdrawing rules,
namely the disjunction elimination rule and reductio ad absurdum rule. The disjunc-
tion elimination rule is chosen because it also a rule from intuitionistic propositional
logic, but it is an elimination rule and when its assumptions are discharged, they “dis-
appear” from the conclusion. This is in contrast to implication introduction rule where
the withdrawn assumption leaves a trace in the form of the antecedent of the inferred
conditional. The classical reductio ad absurdum rule also does not leave any trace
of the withdrawn assumptions, but more importantly it represents a non-intuitionistic
rule. More specifically, if we add it to the standard rules for intuitionistic propositional
logic, we can obtain a natural deduction system for classical propositional logic.22

Let us start with the disjunction elimination rule:

A∨B

[A]
...
C

[B]
...
C

C

which says that we can derive C from A∨B if we can derive C from A and also from
B. It is essentially proof by cases: if we can derive C from both A and B separately,
then we can derive it from A∨B as well.

With the Curry-Howard correspondence, we get:

21 The so-called first dogma of standard semantics, see Schroeder-Heister (2008), Schroeder-Heister
(2012).

22 I would like to thank one of the reviewers for drawing my attention to this issue. The reviewer also
suggested analysing the rule of bivalence also called the rule of dilemma or the rule of excluded middle
(see, e.g., Tennant (1978), p. 48 or Negri et al (2001), p. 12; recently also adopted by D’Agostino et al
(2020) as the only assumption discharging rule) as an example of a classical rule. However, I chose the
reductio ad absurdum rule because it is generally a more familiar rule and it lends itself more naturally to
the functional interpretation in the style of the Curry-Howard correspondence.
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c : A∨B

[x : A]
...

d : C

[y : B]
...

e : C
case(c,x.d,y.e) : C

where case is a constant capturing the behaviour of the disjunction elimination rule.
It takes three arguments, specifically, a proof object c of A∨B and two further proof
objects x.d and y.e (where x, y is bound in d and e) that capture the two derivations of
C from disjuncts of A∨B. These proof objects are then used to determine the specific
proof object for C, i.e., d(a) if inl(a) : A∨B or e(b) if inr(b) : A∨B, where inl and
inr are injective functions that inform us from which proposition was the disjunction
derived.

As we can see, this rule has three premises, two of them are hypothetical judg-
ments, thus in its functional variant two functions should appear as premises. Apply-
ing the same principles as above, we can obtain the following rule:

A∨B A⇒C B⇒C
C

which can be then formalized in CTT as:

c : A∨B f : (A)C g : (B)C
d(c, f ,g) : C

Note that the higher-order function d takes three arguments, two of them are func-
tions. Compare this with the original variant of this rule where the derivations are
coded via the terms x.d and y.e and instead of a higher-order function d we have a
constant case.23

Next, we examine the reductio ad absurdum rule:24

[¬A]
...
⊥
A

given the standard definition of negation ¬A = A ⊃ ⊥, where ⊥ denotes falsity, we
can unpack this rule as follows:

[A⊃⊥]
...
⊥
A

23 Note that from the viewpoint of the lower-order presentation of constructive type theory, case is
essentially just an auxiliary symbol and not a proper object of the type theory (the same can be said
about λ , Π , etc.). This is not the case with higher-order presentation where case can be regarded as a
higher-order function d of type (A : prop)(B : prop)(C : (A∨B)prop)(c : A∨B)((x : A)C(i(A,B,x)))((y :
B)C( j(A,B,y)))C(c) where i : (A : prop)(B : prop)(A)(A∨B) corresponds to inl (analogously for j) and
∨ : (prop)(prop)prop.

24 It probably goes without saying, but we are now leaving the strictly intuitionistic principles behind
the original Curry-Howard correspondence.
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And, following Gabbay and de Queiroz (1992), we take it as a special case of their
inferential counterpart of Peirce’s law:

[A⊃ B]
...
B
A

where B is replaced by ⊥. The corresponding proof objects are as follows:

[x : A⊃ B]
...

b(x, . . . ,x) : B

λx.b(x, . . . ,x) : A

with the condition that A⊃ B is used as both a minor and a major premise.25

Like the implication introduction rule, this rule has one premise that is a hypo-
thetical judgment. Thus, its functional variant will be:

A⊃ B⇒ B
A

which can be formalized as:

f : (A⊃ B)B
λ ( f ) : A

with the reductio ad absurdum special case as
f : (A⊃⊥)⊥

λ ( f ) : A
.

Sidenote. Assumption discharging rules of natural deduction systems generally
allow one to withdraw assumptions that have not occurred in a derivation (i.e., vac-
uous discharge) and/or discharge multiple occurrences of an assumption simultane-
ously (i.e., multiple discharge). How do these discharge policies relate to the func-
tional approach?26 Let us start with vacuous discharge. Consider, e.g., the theorem
A⊃ (B⊃ A), which can be proved as follows:

[A]
B⊃ A

A⊃ (B⊃ A)

The application of implication introduction rule with vacuous discharge in the first
derivation step, which can be more explicitly written as:27

25 Fore more, see Gabbay and de Queiroz (1992), p. 1345.
26 A question raised by one of reviewers.
27 The first derivation of the proof above is a one-step derivation the conclusion of which is the same as

its only assumption. This is considered as a legitimated derivation (see, e.g., Hindley and Seldin (1986), p.
261).
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[A]
...
A

B⊃ A

behaves in the same way as the application of implication introduction with non-
vacuous discharge. The only difference is that we are withdrawing an assumption, B
in this case, that has not been made, thus the original set of premises does not change.
More formally (following Prawitz (1965), p. 23), we can represent the general form of
an instance of an implication introduction rule as a couple 〈〈Γ ,B〉,〈∆ ,A⊃ B〉〉 where
∆ and Γ are sets of propositions, ∆ = Γ −{A} and 〈Γ ,A〉 represents a deduction of
A from Γ . The instance with vacuous discharge will be the same with the difference
that A will not be amongst the premises Γ . In our example above, the first derivation
step will then amount to the case 〈〈A,A〉,〈A,B⊃ A〉〉, since A−B = A (omitting curly
brackets for singleton sets).

This translates straightforwardly into the functional approach by capturing the
pairs 〈Γ ,B〉 and 〈∆ ,A ⊃ B〉 as (potentially multi-argument) functions of types (Γ )B
and (∆)A⊃B. Thus, the derivation via the implication introduction rule with vacuous
discharge in the example above:

[A]
B⊃ A

can be captured as a function of type (A)B ⊃ A (or as ((A)A)B ⊃ A, if we want to
use the more explicit form). This coincides with the typical use of vacuous discharge
in natural deduction: to derive B ⊃ A we just need A and no B is required, which is
mirrored by the function of type (A)B ⊃ A that requires only one argument of type
A and returns an object of type B⊃ A. Thus, the functional approach accommodates
vacuous discharge.28

Next, let us consider multiple discharge. Suppose we have the following deriva-
tion:

A⊃ (A⊃ B) A
A⊃ B A

B

assuming the next derivation step is via implication introduction rule, we can either
discharge all occurrences of the assumption A simultaneously or not. If we are inter-
ested solely in deducibility, it does not matter which discharge strategy we choose
(the set of provable theorems remains the same), but since the Curry-Howard corre-
spondence applies only to systems without the multiple discharge policy (see, e.g.,
Troelstra and Schwichtenberg (2000), pp. 43–44, Thompson (1999), p. 191), in this
paper I naturally presume that not all open assumptions of the same form are al-
ways withdrawn simultaneously. Hence, the functional approach does not make use
of multiple discharge.

28 Although I have discussed vacuous discharge only in connection with implication introduction rule,
these observations can be analogously applied to other assumption withdrawing rules as well. For example,
the general form for disjunction elimination would be 〈〈Γ1,A∨B〉,〈Γ2,C〉,〈Γ3,C〉,〈∆ ,C〉〉where Γ1∪(Γ2−
A)∪ (Γ3−B) (see Prawitz (1965)), which can be captured as ((Γ1)A∨B)((Γ2)C)((Γ3)C)(∆)C.
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3 Conclusion

In this paper I have argued that the Curry-Howard correspondence is not necessar-
ily connected with the placeholder view of assumptions generally associated with
natural deduction systems for intuitionistic propositional logic. Although in its ba-
sic form, assumptions, which correspond to free variables, can indeed be thought of
as just holes to be filled, we can consider also a functional approach where deriva-
tions from assumptions are regarded as functions. On this account, assumptions are
no longer just placeholders but domains of the corresponding functions. From the
logical point of view, this move corresponds to the shift from reasoning with propo-
sitions to reasoning with sequents. Furthermore, I showed that this approach can be
captured using constructive type theory, which also seems to be a good candidate for
formalizing Schroeder-Heister’s notion of ground for a whole sequent.

Acknowledgements I would like to thank the two anonymous referees for providing insightful comments
which helped to improve this paper.
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