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Abstract In Transparent Intensional Logic developed by Pavel Tichý can be recog-

nized two distinct notions of computation that loosely correspond to term rewriting

and term interpretation as known from lambda calculus. Our goal will be to further

explore these two notions and examine some of their properties.
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1 Introduction and motivation

Transparent Intensional Logic (TIL) developed by Pavel Tichý (see Tichý (1988)1)

provides a procedural semantics for natural language analysis. Formally, it is based

on typed lambda calculus with partial functions, whose terms are interpreted proce-

durally: λ-terms are taken as denoting certain abstract procedures, so called construc-

tions, that can be executed. For example, the following construction

[[λxx]1]
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is not understood just as a λ-term that can be β-reduced

[[λxx]1]−→β 1

into its normal form 1, but rather as an instruction to apply an identity function to

the number 1.2 Naturally, such a procedure yields as its output the number 1. In TIL

terminology, we would say that the construction [[λxx]1] constructs the number 1.

Of course, if we take [[λxx]1] as an abstract procedure it doesn’t mean it ceases

to be open to syntactic operations: it can still be β-reduced into 1. The key point

is that depending on which route we take with [[λxx]1] – the semantic one or the

syntactic one – we get different outcomes. The semantic route returns the number

1, the syntactic route delivers the construction 1, which can be regarded as a trivial

construction constructing the number 1 again.

These two routes correspond to two notions of computation present in TIL: syn-

tactic computation (β-reduction is commonly understood as capturing the notion of a

computational step3) and semantic computation (TIL constructions ought to represent

computations4). The presence of these two routes, which roughly correspond to term

rewriting and term interpretation from lambda calculus, is generally known in TIL

(see e.g., Raclavský et al. (2015), p. 255), however, not often directly discussed and

studied. The main of this paper will be to examine these two notions of computation

in more detail.

This paper is organized as follows: in Section 2 we introduce the basics of TIL.

In Section 3 we examine the semantic and the syntactic notions of computation in

TIL (including their potential reducibility) and in Section 4 we explore the possible

interaction between these two notions.

2 Note the difference between 1 and 1, which will be explained below.
3 See e.g., Barendregt (2013).
4 Tichý (1988) often likens constructions to calculations (see e.g., pages 7, 12, 20, 31, 82, 222, 281 in

Tichý (1988)). The more general term computation, however, can be no doubt used as well, considering

Tichý ‘calculates’ also truth values, individuals, etc.
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2 Transparent intensional logic: brief overview

2.1 Setting the stage

Let us have a look at the following expression:

5+7 = 12.

It is an equality statement and as such it should hold between objects of the same

type. There are essentially two (non-syntactic) ways we can interpret it based on the

reading direction:

– from right to left: since 12 is a number and it is equal to 5+7, then 5+7 must be

a number as well;

– from left to right: since 5+7 is a calculation (procedure, construction, . . . ) and it

is equal to 12, then 12 must be a calculation as well.

Of course, neither of these two options is satisfactory. It seems a little peculiar to say

that 5+ 7 is a number. Our immediate reaction would probably be that it is rather

some sort of calculation leading to a number. But at the same time it seems odd to

say that 12 is a calculation. How do we calculate it? Isn’t it rather the result of some

calculation?5 Both approaches bring their own set of challenges and advantages and

we do not intent to settle the question “who’s right?” here. The purpose of this exam-

ple is simply to set the stage for TIL, which explores the from left to right reading. In

TIL, expressions 5+7 and 12 will be understood as expressing certain constructions,

informally, constructions “apply the addition function to the numbers 5 and 7” and

“take the number 12”, respectively.6

5 For analogous observations, see e.g., Tichý (1988), Girard et al. (1989).
6 The from left to right interpretation is also followed by Moschovakis (2006), Muskens (2005), Girard

et al. (1989). The from right to left interpretation is explored e.g., in Martin-Löf’s constructive type theory

(CTT, see Martin-Löf 1984). For a comparison between CTT and TIL, see e.g., [blinded], Primiero and

Jespersen (2010).
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2.2 Constructions

In our presentation of TIL, we will rely on four basic kinds of constructions: variable,

composition, closure, and n-execution. They are captured by the following syntax:

construction notation

variable x

composition [CC1 . . .Cm]

closure [λx1 . . .xmC]

n-execution nX

where Ci is any construction and X is an arbitrary construction or a non-construction

(e.g., truth value, number, etc.).

The first three constructions, i.e., variable, composition, and closure, correspond

roughly to variable, function application, and function abstraction as known from

lambda calculus. In many circumstances they can behave in the same way (e.g., both

λ-terms and constructions are open to α-, β-, η-conversions). There are, however, im-

portant conceptual and practical differences between them. Most notably, construc-

tions of TIL are not terms but abstract objects that can be carried out to construct

other objects. This brings us to the last construction called n-execution, which ex-

emplifies this procedural behaviour of constructions.7 Executions can be thought of

as procedures of running the corresponding constructions. For example, assume that

X is some construction C constructing an object a, then 0C can be interpreted as

an instruction not to execute the construction C,8 construction 1C can be seen as an

instruction to execute C, 2C as an instruction to execute C and then also execute its

result a (which can be also another construction) and so on.9

Each construction C constructs an object with respect to some valuation v, which

is a function assigning values to variables from a sequence of objects of certain

7 Traditionally, TIL is equipped with single execution, double execution and trivialisation construction.

The notion of n-execution is a generalization of these constructions, see Appendix 6.
8 Zero execution has many uses in TIL, one of them being introduction of pre-defined objects into TIL

constructions. From this perspective, we can view zero executions as analogous to constants in impure

lambda calculus.
9 For a proper specification of all constructions, see Appendix 6.
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type. Hence we say that constructions v-construct objects. For example, we will say

that construction x v-constructs the number 12 (assuming v assigns 12 to x), 01 v-

constructs the number 1 (for any valuation), [0Add 05 07] v-constructs 12 (again, for

any valuation), [0= [0Add 05 07] 011] v-constructs F (i.e., falsehood), etc. If a con-

struction C v-constructs nothing at all, we will say that C is a v-improper construc-

tion. Otherwise, we say that it is a v-proper construction. Constructions are called

v-congruent (symbolized by ∼=), if they both v-construct the same object, or they are

both v-improper. Constructions are called logically equivalent (symbolized by ≡), if

they are v-congruent for any v.

Remark 1 More generally, we can think of constructions as explications of Frege’s

notion of sense, their results being the corresponding denotations.10 In other words,

constructions are understood as meanings of natural language expressions. In that

respect, TIL falls under the propositions-as-algorithms paradigm.11

To simplify the notation, we will symbolize zero execution by boldface font with

the exception of equality sign. We will also use infix notation whenever convenient.

Thus, e.g., 01 becomes 1, [0= [0Add 05 07] 011] becomes [[Add 5 7] = 11], etc.

3 Two notions of computation

In TIL we can recognize two notions of computation of constructions, which we will

call syntactic and semantic:

i. syntactic computation (‘construction transformation’): corresponds to what is meant

by computation in lambda calculus, i.e., computational step coincides with β-

reduction; e.g., the step from the construction [[λxx]1] to the construction 1,

ii. semantic computation (‘v-constructing’): roughly correlates to what is meant by

interpretation in lambda calculus, i.e., computational step coincides with a spe-

cific interpretation of a λ-term; e.g., the step from the construction [[λxx]1] to the

non-construction 1.
10 More accurately, they aim to explicate Frege’s notion of conceptual content from Begriffschrift (see

e.g., van Heijenoort 1977). For a more detailed examination, see Tichý (1988).
11 See also Jespersen (2017), Muskens (2005), Moschovakis (2006).



6

Schematically, assume that C and D are proper constructions. Furthermore, assume

that C is a β-reducible construction, D is a β-reduced construction from C, and a is

an object v-constructed by both C and D, then (see Figure 1):

C D

a

v

β

v

Fig. 1 Syntactic and semantic computations

where the β label represents the syntactic computational step (C is β-reducible toD)

and the v label denotes the semantic constructional steps (both C and D v-construct

the same object a).

Remark 2 We assume that β-reduction preserves strict equivalence between con-

structions, i.e., that both C and D either v-construct the same object for every val-

uation v, or they are both v-improper. For more on the topic of β-conversion and

TIL, see Dužı́ (2017).

For example, consider the construction [[λxx]1]. Then we get (see Figure 2):

[[λxx]1] 1

1

v

β

v

Fig. 2 Syntactic and semantic computations of [[λxx]1]

In other words, [[λxx]1] is β-reducible to 1 (syntactic computational step) and both

[[λxx]1] and 1 v-construct the number 1 (semantic constructional steps). These two

notions of computation can be defined as follows:

Definition 1 (Syntactic computability) Construction C will be said to be syntacti-

cally computable if there exists some construction C ′ different from C that can be

obtained by applying β-reduction to C. Otherwise, we say that C is syntactically not

computable, i.e., that C has itself as value.
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Definition 2 (Semantic computability) ConstructionCwill be said to be semantically

computable if there exists some object a that this construction v-constructs for some

valuation v (in other words, if C is a v-proper for some v, i.e., if C is not an improper

construction). Otherwise, we say that it is semantically not computable.

Instead of syntactic and semantic computability we will sometimes use the more

specific terms β-computability and v-computability.

To better demonstrate the difference between syntactic and semantic computabil-

ity, consider e.g., the following four constructions

i) [[λx[λx[λx[Succx]]x]x] 0]

ii) [[λx[λx[Succx]]x] 0]

iii) [[λx[Succx]] 0]

iv) [Succ 0]

From the perspective of syntactic computation, i) computes into ii), ii) into iii), and

finally iii) into iv). From the perspective of semantic computation, all these construc-

tions compute the number 1 (schematically, see Figure 3). In other words,β-reducible

constructions i)–iii) into iv) are understood as v-constructing the same object, i.e., the

number 1. We can generalize this observation and say that we can have number n−1

(n> 1) of β-reducible (syntactically computable) proper constructionsA1, . . . ,An−1

into An, each one of them ‘converging’ via v-computability (semantic computation)

into a, which is the object v-constructed by each Ai (schematically, see Figure 4).

Remark 3 Note that all the construction i)–iv) from the above case semantically

compute 1 in a single computational step. For example, [[λx[λx[λx[Succx]]x]x] 0]

and [[λx[Succx]] 0] directly v-construct/compute into 1, even though single syntactic

computation (via β-reduction) reduces the former into [[λx[Succx]] 0] and the latter

into [Succ 0], which is from the pure lambda calculus viewpoint further irreducible.
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[[λx[λx[λx[Succx]]x]x] 0]

[[λx[λx[Succx]]x] 0]

[[λx[Succx]] 0]

[Succ 0]

. . .

\β

1

v

β

1

v

β

1

v

β

1

v

Fig. 3 Parallel progress of syntactic and sematnic computational steps

A1 A2 . . . An−1 An

a

β

v

β

v

β

v

β

v v

Fig. 4 Convergence of semantic/v-computations

3.1 Translation between syntactic and semantic computation

Depending on what ‘computation route’ we take, we get different results. For ex-

ample, as already discussed above, construction [[λxx]1] β-computes to 1, but v-

computes to 1. Schematically (see Figure 5):

Even though the difference between syntactic and semantic computation might

seem negligible in simple cases just as this one (after all, 1 ‘directly’ v-constructs 1),

there are other cases that exhibit much less straightforward behaviour. Consider e.g.,

the following four scenarios A, B, C, and D (see Figures 6, 7, 8, and 9).
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[[λxx]1]

1 1
sy
n
ta
ct
icβ

sem
a
n
tic

v

Fig. 5 Syntactic and semantic computational routes

Remark 4 By striked β, i.e., \β, we will signify that β-reduction cannot be applied

(= no constructions available for reduction). The ellipsis · · · will then stand for this

further β-irreducible construction (essentially, a β-normal form) appearing in the

preceding node. And finally, ∅ will denote nothing, i.e., the result of an improper

construction.

[[λx[Div x 0]] 5]

[Div 5 0] ∅

. . . ∅

β v

\β v

Fig. 6 Case A

1

. . . 1

\β v

Fig. 7 Case B

[[λx[Add 5 x]] 7]

[Add 5 7] 12

. . . 12

β v

\β v

Fig. 8 Case C

[5 x]

. . . ∅

\β v

Fig. 9 Case D

As can be seen, we can get varying results:
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A: [[λx[Div x 0] 5] is syntactically computable into [Div 5 0], but not semantically

computable – it is so called improper construction, i.e., construction that fails to

v-construct anything.

B: 1 is semantically computable to 1, but syntactically non-computable since there

is nothing to β-reduce.

C: [[λx[Add 5 x]] 7] is computable both syntactically and semantically: syntactic

computation yields [Add 5 7], semantic one yields 12. Note, however, that the

result is no longer both syntactically and semantically computable, see case B.

D: [5 x] is not computable either syntactically or semantically: there is nothing to

β-reduce and it is incorrectly formed composition construction (see definitions

of constructions in Appendix 6).

Remark 5 Note that e.g., [x y], [Add x y], [z 5 7], [z 5 y], [z x y] are all properly

formed constructions of TIL that are potentially (i.e., depending on some valuation

v) semantically computable.12

Thus, as illustrated by cases A, B, C, and D, the results of syntactic and semantic

computations are not always as similar as in our motivational example [[λxx] 1].

Additionally, we can recognize the following four basic computational behaviours of

constructions:

1. construction is both syntactically and semantically computable (case C above),

2. construction is syntactically but not semantically computable (case A above),

3. construction is semantically but not syntactically computable (case B above),

4. construction is neither semantically nor syntactically computable (case D above).

We will adopt the following metalanguage shorthands:

– symbol �� will represent constructions that are both β- and v-computable,

– symbol��will represent constructions that areβ-computable but not v-computable,

– symbol��will represent constructions that are v-computable but notβ-computable,

– symbol �� will represent constructions that are neither β- nor v-computable.

12 Let us not confuse [x y] with “apply variable x to variable y”, the proper reading should be “apply

the function v-constructed by variable x to the argument v-constructed by variable y”.
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Informally,��,��,��, and�� can be understood as four basic computation types

of constructions we can encounter in TIL. E.g., we can say that some construction A

(e.g., 1 of type��) has different computation type than constructionB (e.g., [[λxx] 1]

of type ��). Probably the most interesting ones are the �� and �� computation

types since they represent constructions that are, in a way, both computable and non-

computable. More specifically, they signify that we can have constructions that are

syntactically computable but not semantically and vice versa.

To sum up, our analysis of the cases A, B, C, D indicates that the two notions

of computations—syntactic and semantic—are not convertible into each other, since

they can yield varying results. More formally, we can prove this in the following way.

First, we need to introduce two new notions:

Definition 3 (β-computation route) Let A, a be constructions. We say that there is a

β-computation route from A to a if A can be reduced to a via β-reduction modulo

zero execution (written as A�0
β a).13

Definition 4 (v-computation route) Let A be a construction and a either a construc-

tion or a non-construction. We say that there is a v-computation route from A to a if

A constructs a w.r.t. valuation v (written as A�v a).

Remark 6 Note that A�0
β a coincides with A−→v a in basic cases, e.g., compare

[[λxx] 1]�0
β 1 and [[λxx] 1]−→v 1.

Second, let us denote by Π(β,v) the translatability of β-computation into v-

computation, byΠ(v,β) the translatability of v-computation into β-computation, and

finally by Π(full) their intertranslatability. Thus

Π(β,v) iff ∀A∀a(A�0
β a =⇒ A�v a)

Π(v,β) iff ∀A∀a(A�v a =⇒ A�0
β a)

Π(full) iff ∀A∀a(A�0
β a ⇐⇒ A�v a)

13 By “modulo zero execution” we simply mean ignoring the outermost zero execution. For example, 12

modulo zero execution becomes 12 (recall that 12 is a shorthand for 012).
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In other words, we say that β-computation is translatable into v-computation (i.e.,

Π(β,v)) iff it holds that for all constructions A and all objects a if there is a β-

computation route fromA to amodulo zero execution, then there is also a v-computation

route fromA to a. Analogously in other cases. Thus, to show translatability, we want

to prove ∀A∀a(A�0
β a=⇒A�v a) or ∀A∀a(A�v a=⇒A�0

β a) or both.

Hence, in order to demonstrate the mutual untranslatability, it is sufficient to find

computations routes�0
β and�v (essentially, edges in the above schemes) that start

in A but produce different results (even modulo zero execution), i.e., we want to find

A and a that do not satisfy the above conditions.

Let us start with the �v to �0
β direction. Suppose that A is [[λx[Div x 0] 5].

Then [[λx[Div x 0] 5]�v ∅, but [[λx[Div x 0] 5]�0
β [Div 5 0]. Clearly, we have

varying results, because ∅ 6= [Div 5 0]. Since we can form a construction that violates

our translatability conditions, we can conclude that it is not the case that semantic

computation can be translated into syntactic computation for all constructions. Thus,

∀A∀a(A�v a=⇒A�0
β a) and, consequently, Π(v,β) and Π(full) do not hold.

Now, let us consider the other direction �0
β to �v. Let us suppose that A is

[Succ 0]. Then [Succ 0]�0
\β
· · · , but at the same time [Succ 0]�v 1. Clearly · · · 6= 1,

more precisely, [Succ 0] 6= 1. Hence, once again, we have different results – we can

find a construction whose semantic computation is untranslatable into syntactic one.

Therefore, we can conclude that ∀A∀a(A�0
β a =⇒ A�v a) and, consequently,

Π(β,v) do not hold either.

4 Interaction of syntactic and semantic computations

So far we have defined two notions of computation and specified their four possi-

ble combinations (i.e., basic computations types of constructions). The natural next

question seems to be: are there any interactions between these four computation types

we can trace? For example, if we compose together two constructions one of which

is only semantically computable and the other only syntactically computable, what

computation type will inherit the resulting construction?
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Unfortunately, the answer is no, we cannot generally track the interaction of these

two notions of computations. The main reason for this is that semantic computability

often depends on individual valuations. Take e.g., [x 5 0], whether this construction is

v-computable depends entirely on the valuation v, specifically, what function the con-

struction x v-constructs. If it v-constructs e.g., additionAdd, then it is v-computable,

if division Div, then non-v-computable, etc. There is, however, a way around it: we

can restrict our attention only to closed constructions, i.e., constructions with no free

variables. This will eliminate the problem of [x 5 0] and other similar constructions

being semantically computable/non-computable based on valuations alone.

Thus, we are now faced with the following narrower problem: can we systemati-

cally study the interaction between syntactically and semantically computable closed

constructions? And by systematic study we mean being able to determine the com-

putation type of the resulting construction out of the computation types of the parts

it was composed of.14 In other words, we take “systematic” to be synonymous with

“predictable” in the sense that the same inputs should produce the same outputs.

For this purpose we will introduce the following metalanguage notation:

– a + b = c can be read as: a composition of two constructions of computation

types a and b results in a construction of computation type c, where a,b,c are

metavariables for ��, ��, ��, ��.

For example, the construction [Succ 0] will be associated with the following statement

of our new syntax: ��+��=��.

Our claim is that computation types of constructions alone cannot determine the

computation type of the resulting construction composed of them. We can prove this

by contradiction.

Reductio hypothesis: Computation types of constructions alone can determine the

computation type of the resulting construction composed of them. From our Reduc-

tion hypothesis follows that no composition of two different computation types can

ever lead to different results. What this entails is essentially that the results should be

14 For simplicity, we consider only compositions composed of two constructions, one constructing a

function, the other its argument.
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always foreseeable, i.e., combinations of same computability-types of constructions

should lead to the same outcomes.

Working assumption: Combination of two non-β-computable constructions should

result in non-β-computable construction (i.e., ��+�� = �� in our symbolic no-

tation). For example, Succ is not β-computable (i.e., of type ��) and so is 0. And if

we compose them together, we get another non-β-computable construction [Succ 0]

(also of type ��). So from the composition of two non-β-computable constructions

we get another non-β-computable constructions. Hence,��+��=�� holds, just

as our working assumption predicted.

But now consider slightly different case. Again we have two constructions [λxx]

and 1 that are also both non-β-computable (i.e., of types ��). However, if we com-

pose them together, we get [[λxx]1], which is now a β-computable construction (of

type��). Hence,��+��=��. And thus, contradiction arises, since we can now

derive that �� = ��. So we can have compositions of constructions of same com-

putation types leading to different results. Hence, our working hypothesis is false.

Therefore, we need more than just the type of computation of the corresponding con-

struction to determine the computation type of the resulting construction.

5 Final remarks

In this paper we have examined two notions of computation native to TIL, a syn-

tactic one and a semantic one, which roughly correspond to term rewriting and term

interpretation from lambda calculus. We showed that these two notions are mutually

untranslatable in TIL and that we can in general recognize four different computation

types among TIL constructions based on the combination of their syntactic and se-

mantic computability. Finally, we showed that the computation types of constructions

alone cannot determine the computation type of the resulting construction composed

of them.
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6 Appendix

6.1 Constructions

The traditional definition of TIL constructions goes as follows (original formulation

by Tichý (1988), we follow Dužı́ et al. (2010) with minor deviations):15

Definition 5 (Constructions)

1. The variable x is a construction that constructs an objectO of the respective type dependently on a

valuation. We say that it v-constructsO.

2. Where X is any object, 0X is the construction trivialization. It constructs X without any change.

3. The composition [X0X1 . . .Xm] is the following construction. IfX v-constructs a function f of type

(αβ1 . . .βm) andX1 . . .Xm v-construct objects b1, . . . ,bm of typesβ1, . . . ,βm, respectively, then

the composition [X0X1 . . .Xm] v-constructs the value (an object of typeα, if any) of f on the tuple-

argument 〈b1, . . . ,bm〉. Otherwise, it is a v-improper construction, i.e., construction that does not

construct anything.

4. The closure [λx1 . . .xmY] is the following construction. Let x1, . . .xm be pairwise distinct variables

v-constructing objects of types β1, . . . ,βm and Y a construction v-constructing an object of type α.

Then [λx1 . . .xmY] is the construction closure. It v-constructs the following function f of type

(αβ1 . . .βm): let 〈b1, . . . ,bm〉 be a tuple of objects of types β1 . . .βm, respectively, and v ′ be a

valuation that associates xi with bi and is identical to v otherwise. Then the value of function f on

argument tuple 〈b1, . . . ,bm〉 is the object of type α v ′-constructed by Y. If Y is v ′-improper, then

f is undefined on 〈b1, . . . ,bm〉.

5. The single execution 1X is the construction that either v-constructs the object v-constructed byX or,

if X v-constructs nothing, is v-improper.

6. The double execution 2X is the following construction: letX be any object, the double execution 2X is

v-improper ifX is a non-construction or ifX does not v-construct a construction or ifX v-constructs

a v-improper construction. Otherwise, letX v-construct a constructionX ′ and letX ′ v-construct and

object X ′′, then 2K v-constructs X ′′.

7. Nothing other is a construction, unless it follows from 1–6.

6.2 Ramified type theory

We follow the specification from Tichý (1988):

Definition 6 (Ramified type theory of TIL) Let B be a base, i.e., a set of atomic types.

15 An alternative formulation can be found in Raclavský et al. (2015).
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1. (t1i) Every member of B is a type of order 1 over B.

(t1ii) If 0<m and α,β1 . . .βm are types of order 1 over B, then the collection (αβ1 . . .βm) of all

m-ary (total and partial) mappings from β1 . . .βm into α is also a type of order 1 over B.

(t1iii) Nothing is a type of order 1 over B unless it follows from (t1i) and (t1ii).

2.(cki) Let α be any type of order k over B. Every variable ranging over α is a construction of order

k over B. If X is of (i.e., belongs to) type α, then 0X, 1X, and 2X are constructions of order k

over B. Every variable ranging over α is a construction of order k over B.

(ckii) If 0<m and X0,X1, . . . ,Xm are constructions of order k, then [X0 X1 . . . Xm] is a construction

of order k over B. If 0<m,α is a type of order k over B, and Y as well as the distinct variables

x1, . . . ,xm are constructions of order k over B, then [λαx1 . . .xm Y] is a construction of order

k over B.

(ckiii) Nothing is a construction of order k over B unless it follows from (cki) and (ckii).

Let ∗k be the collection of constructions of order k over B. The collection of types of order k+ 1

over B is defined as follows:

(tk+1i) ∗n and every type of order n is a type of order k+1.

(tk+1ii) If 0<m and α,β1, . . . ,βm are types of order k+1 over B, then the collection (αβ1 . . .βm)

of allm-ary (total and partial) mappings fromβ1, . . . ,β intoα is also a type of order k+1 over

B.

(tk+1iii) Nothing is a type of order k+1 over B unless it follows from (tk+1i) and (tk+1ii).

6.3 Collisionless substitution

Originally defined by Dužı́ et al. (2010):

Definition 7 (Collisionless substitution) Let x be a variable and C,D any kinds of construction. If x is

not free inC, then the result of substitutingD for x inC isC. Assume now that x is free inC. Then:

(a) If C is x, then the result of substituting D for x in C is D. If C is 1X or 2X, then the result of

substitutingD for x inC is 1Y or 2Y, where Y is the result of substitutingD for x in X.

(b) IfC is [XX1 . . .Xm], then the result of substitutingD forx inC is [YY1 . . .Ym], whereY,Y1, . . . ,Ym

are the results of substitutingD for x in X,X1, . . . ,Xm, respectively.

(c) LetC be of the form [λx1 . . .xmY]; for 16 i6m, letyi=xi if xi is not free inD, and otherwise

the first variable v-constructing entities of the same type as xi, not occurring inC, not free inD, and

distinct from y1, . . . ,yi+1. Then the result of substitutingD for x in C is [λy1 . . .ymZ], where Z

is the result of substitutingD for x in the result of substituting yi for xi(1 6 i6m) in Y.

To simplify the notation, let C,D1, . . . ,Dn be arbitrary constructions, x1, . . . ,xn vari-

ables. Then, for 16 i6 n, C(Di/xi) will represent the result of substituting Di for

xi in C.
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6.4 β-reduction

We follow the specification of β-reduction from Dužı́ (2017):16

Definition 8 (β-reduction) Let C be a construction typed to v-construct object of type α, x1 and y1

variables typed to v-construct objects of type βn, . . . , xn and yn variables typed to v-construct objects

of type βn and [λx1 . . .xnC] is typed to v-construct object of type (αβ1 . . .βn), then

[[λx1 . . .xnC] y1 . . .yn] −→β C(y1/x1 . . .yn/xn)

whereC(y1/x1 . . .yn/xn) is the construction that arises fromC by collisionless substitution of y1 for

all the occurrences of x1, . . . , yn for all the occurrences of xn,C v-constructs object of type α, x1 and

y1 v-construct objects of type β1, . . . , xn and yn v-construct objects of type βn, and [λx1 . . .xnC]

v-constructs a function of type (αβ1 . . .βn).

6.5 n-execution

In this section, we introduce the construction of multiple execution we will call n-

execution (for n > 0), which is a generalization of TIL’s native constructions ex-

ecution and double execution (see Section 6.1 above). Further, we will show that

trivialization can be understood as its limiting case when n = 0. Our generalization

is based on the following three simple observations that keep reappearing in TIL

literature from time to time:

Observation 1. If we can have single execution and double execution, then, in

theory, there should be nothing preventing us from introducing even triple execu-

tion, quadruple execution and so on. And if that is the case, then we can generalize

this observation and introduce the notion of n-execution where n is the number of

consecutive executions.17

Observation 2. If we should understand 1X as ‘execute X’ (i.e., ‘1’ = one ex-

ecution) and 2X as ‘execute X and then execute its result X ′’ (i.e., ‘2’ = two exe-

cutions), then, arguably the most natural reading of 0X—if we have never heard of

trivialization—is ‘do not execute X ′ (i.e., ‘0’ = zero executions).18

16 We utilize here so called restricted β-reduction by name (see Dužı́ 2017), but other variants can be

employed as well.
17 See e.g., Materna (1998), Dužı́ et al. (2010), Raclavský et al. (2015).
18 See e.g., Raclavský (2003), Jespersen (2017).
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Observation 3. Multiple execution for n > 2 is reducible into iterated double

execution.19

Definition 9 (n-execution) For any object X we shall speak of the n-execution of X and symbolize it as
nX, where n> 0.

1. Ifn= 0, then 0X isX (whereX is either a construction or a non-construction). More specifically, to

carry out 0X, we start withX and do nothing further with it, not even valuation. It is never v-improper.

2. If n> 1, there is a need to distinguish two main cases (the second has three further subcases):

(a) X is a non-construction: then nX is v-improper construction.

(b) X is a construction:

i. n= 1: then nX v-constructs the same object as does X (if any).

ii. n= 2: then nX v-constructs the object v-constructed by X ′ (assuming nX v-constructs

X ′). Otherwise, it is v-improper.

iii. n> 2: then nX v-constructs the same object (if any) as does sX where s is a sequence of

n−1 iterated n-executions with n= 2. For example, 3X can be reduced into 2(2X).

From the type-theoretical perspective, if X is of (i.e., belongs to) some type α of order

k over B, then nX (where n> 0) is a construction of order k over B.20

To get a better feeling of how n-execution works for cases with n > 1, consider

the following cases:

1. n= 2: same as Tichý’s original definition above.

2. n = 3: analogously to the case above, but the construction X ′ v-constructed by

X has to be v-constructing another (proper) construction X ′′, otherwise it is v-

improper.

3. n= 4: analogously to the case above, but X ′′ has to be v-constructing yet another

(proper) construction X ′′′, otherwise it is v-improper.

. . . etc.

Specific instances of n-execution (for n = 0,1,2, . . .) will be called 0-execution, 1-

execution, 2-execution, etc. For example, 05 is an example of 0-execution, 1x is an

example of 1-execution, 25 is an example of 2-execution, etc.

To conclude, on this approach, trivialization, execution, and double execution are

just specific instances of n-execution for some n > 0, with trivialization being an

19 Originally noted by Petr Kuchyňka, see e.g., Raclavský (2003), Raclavský et al. (2015).
20 For more about ramified type hierarchy, see Section 6.2.
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alternative name for the degenerate case when n = 0 (informally: ‘do not execute’,

‘do nothing’ or—as Tichý put it—‘leave it as it is’ (Tichý (1988), p. 63).

Remark 7 The case of n = 0 is a special one also from another point of view – the

appearance of ‘0’, i.e., 0-execution, binds free variables in contrast to 1-execution,

2-execution, etc. (see e.g., Dužı́ et al. (2010), p. 47). This is, after all, to be expected.

As we mentioned, 0-execution 0X is essentially an instruction to ‘do nothing with X’

and by binding the free variables we are making sure that nothing is indeed done with

X, not even valuation or substitution.
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Jean van Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic,

1879-1931. Source Books in the History of the Sciences. Harvard University Press,

1977. ISBN 9780674324497.

http://link.springer.com/10.1007/s10516-012-9201-4
http://link.springer.com/10.1007/s10516-012-9201-4
http://link.springer.com/10.1007/s10516-006-0002-5
http://link.springer.com/10.1007/s10516-012-9201-4.Yiannis
http://link.springer.com/10.1007/s10516-006-0002-5.Pavel



