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Abstract. In this paper, we will be interested in the notion of a com-
putable proposition. It allows for feasible computational semantics of
empirical sentences, despite the fact that it is in general impossible to
get to the truth value of a sentence through a series of effective com-
putational steps. Specifically, we will investigate two approaches to the
notion of a computable proposition based on constructive type theory
and transparent intensional logic. As we will see, the key difference be-
tween them is their accounts of denotations of empirical sentences.
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1 Introduction

In this paper, we will be interested in the following issue:

– Can we make sense of empirical sentences in computational terms given that
it is generally impossible to get to the truth value of a sentence through a
sequence of effective computational steps?

The answer we will put forward is positive, but it requires adoption of the notion
of a computable proposition, i.e., a proposition that yields another proposition
upon execution, not a truth value. These computable propositions will be under-
stood as meanings of empirical sentences. We examine two possible approaches
to this notion, namely, an approach based on constructive type theory (CTT,
[14]) and an approach based on transparent intensional logic (TIL, [30]), and
we try to clarify the relation between their respective notions of a computable
proposition. But first we will look more closely at the general relationship be-
tween meaning and computing.
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2 I. Pezlar

Let us start by considering the following mathematical object:1 2 + 2. Using
a common sense notion of computation, we can compute it and get the number
4. In what kind of a relationship does the object 4 stand to the object 2+2? The
standard answer is that the relation between 2 + 2 and 4 can be understood in
terms of an evaluation procedure. The number 2 + 2 is a non-canonical form of
the canonical number 4 and the latter can be reduced to the former by following
appropriate reduction rules associated with the non-canonical operator + used
in constructing this non-canonical number. Thus, generally speaking, we can
view the non-canonical objects as programs and their corresponding canonical
objects as their values. For example, the program 2+2 terminates at the value 4.
Can we then conclude that the meaning of the object 2+2 is its canonical value,
i.e., the object 4 in this case? We can, but then we would also have to concede
that all other programs that terminate at the same value (e.g., 2 × 2, 5 − 1 or
16÷ 4, . . . ) have the same meaning, but this would be a hard pill to swallow for
many. So what is the meaning of 2+2, if not its canonical value? Whatever it is,
it seems to be connected with the way we are computing its value, i.e., reducing
it as a non-canonical object to a canonical one, not with the value itself.

Behind every non-canonical object a there is an unspoken question: ‘Can a
be reduced to a canonical object’? Could we, perhaps, view this question as
roughly equivalent to the question: ‘Does a mean anything?’ In other words,
are the non-canonical objects meaningful only insofar as they are reducible to
their corresponding canonical forms?2 This, however, seems to be too strong of a
requirement. Generally, we seem to be understanding non-canonical objects just
fine even in cases where we do not know (or cannot know) their corresponding
canonical objects. Take, e.g., the following non-canonical object 16547 + 34. It
seems clear that we can understand it even if we do not know its value. If we
compute it, we learn something new (the canonical form of this object), but the
meaning of the original object seems to remain unchanged by this discovery – it
does not seem to imbue 16547 + 34 with more meaning than it had before the
computation.

Probably the easiest way to make sense of this situation is to accept some
form of Fregean meaning-denotation dichotomy: non-canonical objects are mean-
ings ‘in themselves’ and they do not need to lead to any denotations in order
to be intelligible for us. In other words, non-canonical objects do not become
meaningful insofar as they are computable to canonical ones, they stand on their
own, so to speak.

So far, we have talked about computation and meaning only in regards to
mathematical objects, but can we adopt an analogous approach to the empirical

1 For simplicity, we assume we are working directly with the mathematical objects,
thus ignoring the syntactic layer for the sake of the semantic one. For example,
consider the difference between a mathematical expression ‘2+2’ and a mathematical
object 2 + 2: while the former can be reduced to the numeral ‘4’, the latter can be
computed to the number 4.

2 As is the case in, e.g., the Dummett–Prawitz-style proof-theoretic semantics (see [6],
[19]).
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discourse as well? Consider, e.g., the proposition: Charles is a bachelor. In what
sense, if any, can we compute it? Clearly, we cannot compute it to its truth
value since there is no general method how to compute propositions to their
truth values. But maybe there is another way we can go about computing it,
and thus carrying over the non-canonical and canonical object distinction?

Let us start with a simple example from intuitionistic logic.3 A proposition
¬A is usually defined as A → ⊥ where ⊥ denotes absurdity. Note that the
meaning of the proposition ¬A is explained indirectly, since we have no proof
conditions for it, strictly speaking, only for A → ⊥. In other words, if we want
to inquire into the meaning of ¬A, first we have to transform it into A → ⊥.
Arguably, this definitional transformation can be regarded as a basic computa-
tional step itself. And if so, then we can view ¬A as a non-canonical proposition
that can be computed to its canonical form A→ ⊥.

The same approach, we believe, can be applied to empirical propositions as
well. For example, the empirical proposition Charles is a bachelor can be viewed
as a non-canonical proposition, i.e., a proposition that has no direct truth con-
ditions. And if we want to inquire into its meaning, or rather its truth con-
ditions, we have to transform it to its canonical form. In this case, it might
be, for example: Charles is a man ∧ ¬(Charles is married). Thus, the empiri-
cal proposition Charles is a bachelor can be computed to Charles is a man ∧
¬(Charles is married). The proposition Charles is a bachelor can then be un-
derstood as the meaning of the sentence ‘Charles is a bachelor’, while the propo-
sition Charles is a man ∧ ¬(Charles is married) as its denotation. So, in this
approach, canonical propositions are propositions that cannot be computed any
further.4

From a historical perspective, the idea of entertaining computable propo-
sitions can be traced back to two different philosophical and logical sources:
a constructive (intuitionistic) tradition concerned with the language of mathe-
matics and logic that starts with [1] and a non-constructive (platonist) tradition
concerned with natural language that starts later with [28]. In the rest of the
paper, we examine two type-theoretic frameworks that – we believe – best rep-
resent these two traditions: Per Martin-Löf’s constructive type theory ([14]) and
Pavel Tichý’s transparent intensional logic ([30]). Specifically, we will look at how
these systems approach the notion of a computable proposition, a task which
can be split into two further questions: ‘What is a proposition?’ and ‘What is
a computation?’5 In other words, our main aim will be to discuss the notion

3 This example as well as the whole idea of computing propositions to canonical forms
not to truth values was proposed in [15], a paper presented at a workshop on Frege
at the University of Leiden in August 25, 2001, transcribed by Bjørn Jespersen.

4 Since we are mainly interested in the notion of a computable proposition, we in-
tentionally choose very basic examples of propositions such as ‘¬A = A ⊃ ⊥’ or
‘Charles is a bachelor’ to keep the focus on the computability aspect rather than on
the propositional aspect. To learn how to analyze more complex sentences in CTT,
consult, e.g., [25], [12], [2]. For TIL, see, e.g., [7], [21], [22].

5 This investigation can be viewed as a follow up to the paper [18] that explores how
these two systems approach mathematical and logical propositions.
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of a computable proposition from the perspectives of CTT and TIL and to try
to conceptually clarify the relation between their respective approaches to this
notion. We will not aim to provide new technical developments for CTT or TIL.

Terminological note. Since we will be discussing two frameworks with differ-
ent terminological backgrounds, we will try to simplify the vocabulary whenever
reasonably possible. For example, we will call constructive sets of constructive
type theory as types and hyperpropositions of transparent intensional logic as
propositions. Deviations from the standard terminology such as these will always
be pointed out throughout the text.

2 Constructive tradition

Although it was probably Aarne Ranta ([25]) who first applied constructive type
theory to a systematic study of natural language semantics,6 the general meaning
as a computation approach can be traced much further, at least to the work of
L. E. J. Brouwer on constructive mathematics, specifically on constructive logic
and the proof-based account of logical constants, also known as the Brouwer-
Heyting-Kolmogorov (or simply BHK) interpretation. The general idea is to
explain the meaning of logical connectives not in terms of their truth conditions
but in terms of their proof conditions. For the constructive propositional logic,
we get the following explanations (see Tab. 1).

Table 1. The BHK interpretation of logical constants

a proof of the
proposition

consists of which can be formalized as

A ∧B a proof of A and a proof of B (a, b) : A ∧B
A ∨B a proof of A or a proof of B i(a) : A ∨B or j(b) : A ∨B
A→ B an effective method which takes

any proof of A into a proof of B
λx.b(x) : A → B (where b(a)
is a proof of B provided a is a
proof of A)

⊥ there is no proof (absurdity) −

This interpretation of logical constants, particularly of implication, served
as a basis for another important discovery, specifically the observed analogy
between proofs and programs and proposition and types.

2.1 Proofs as programs

The intuition that logic and computing are somehow related has a long tradition
– going back at least to Leibniz’s concept of the calculus ratiocinator – however,

6 Following Michael Dummett’s exploration of constructive principles outside the
scope of mathematics ([5]) and Göran Sundholm’s analysis of donkey sentences using
constructive type theory ([27]).
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it hasn’t been made precise until the discovery of the propositions as types
principle.7 Briefly put, it identifies constructive proofs with programs.8

As hinted above, the propositions as types principle is closely related to the
BHK interpretation of constructive logic and in its most common form it refers to
the recognized correspondence between Gerhard Gentzen’s intuitionistic natural
deduction ([8]) and Alonzo Church’s simply typed λ-calculus ([3]),9 which can be
understood as a rudimentary functional programming language (see, e.g., [11]).
Specifically, we get the following correspondences (see Tab. 2).

Table 2. The propositions as types principle

natural deduction λ-calculus

assumption free variable
implication introduction
(= ‘deduction theorem’)

λ-abstraction
(= function definition)

implication elimination
(= modus ponens)

β-reduction
(= function application)

proposition type
proof (functional) program

In practice, this means that, e.g., A → B can be interpreted as an im-
plicational proposition where A is the antecedent and B the consequent and
simultaneously as a type of a function from objects of type A to objects of type
B. Proving this proposition then corresponds to constructing an object of the
type A→ B. Of course, these correspondences can be expanded (e.g., simplifica-
tion of proofs understood as evaluation of programs, provability as a problem of
type inhabitation, etc.) as well as generalized (introduction rules as constructors,
elimination rules as destructors, etc.).

2.2 Constructive type theory

The proposition as types principle is one of the fundamental principles of con-
structive type theory (CTT, [14]) and it will help us to explain what is under-
stood as a proposition in this framework. Specifically, under the propositions
as types principle, the question ‘What is a proposition?’ becomes synonymous

7 Also known as the Curry-Howard correspondence or isomorphism ([4], [10]), although
this name is rather unfortunate as it omits two other key figures of the discovery,
namely N. G. de Bruijn and Per Martin-Löf.

8 For an excellent overview, see, e.g., [31].
9 For simplicity, we omit the Haskell Curry’s side of the discovery – the fact that

combinators from combinatory logic correspond to axioms in Hilbert-style calculus.
For example, the combinator K (i.e., Kxy = x) corresponds to the axiom A→ B →
A.
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with the question ‘What is a type?’10 In CTT, we specify a type by specifying
what constitutes its canonical objects and when two canonical objects are equal.
For example, the type N of natural numbers is specified by the following rules
introducing canonical objects and equal canonical objects of type N :

0 : N 0 = 0 : N
n : N
s(n) : N

n = m : N
s(n) = s(m) : N

where 0 : N is a judgment stating that ‘0 is an object of type N ’. Thus, the
type N is inhabited by canonical objects of the form s(n) and 0. Furthermore,
any object that reduces to a canonical object of a certain type is considered an
object of that type as well.

This brings us to the notion of a computation. From the perspective of CTT,
a computation is a process of reducing non-canonical objects to their canonical
forms via the corresponding computation rules. For example, assuming we have
defined 1 as s(0), 2 as s(1), etc., and + as a+0 = a : N and a+s(b) = s(a+b) : N ,
we can form a non-canonical natural number 2 + 2 that can be computed to
s(2 + 1) (lazy evaluation) or fully evaluated to 4.11

For the basic semantic scheme of CTT (based on [20]), see the Fig. 1. It
implements the Fregean idea that meaning is a mode of presentation for picking
out denotation (in modern terms, a program for computing denotation). Note
that since we are able to state things like 2 + 2 = 4 : N , it means that the
result of a computation, i.e., 4 in this case, is an object of the same type N
as the computation itself, i.e., 2 + 2 (see Fig. 2). In other words, the levels of
meanings and denotations are conflated, or rather, viewed as entities of the same
category.12

meaning semantic value

expression syntactic value

evaluates

formalizationexpresses

evaluates

Fig. 1. Semantic scheme of CTT

10 Or more precisely, ‘What is a constructive set?’ since in CTT the word ‘type’ is
typically reserved for the higher-order presentation of CTT, which we will not use
here. In CTT, one typically starts with the notion of a set and defines a proposition in
terms of it. The category of sets is then identified with the category of propositions,
which is the way the propositions as types principle is adopted in CTT. For more,
see, e.g., [16].

11 The natural number 2 + 2 is considered non-canonical because it does not follow the
forms prescribed by the introduction rules for the type N , i.e., it is neither 0 nor
does it have the form s(n).

12 See, e.g., [20], pp. 21-26. This, as we will see, is in contrast with TIL, where meanings
and denotations are kept apart and viewed as entities of distinct kinds.
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2 + 2 4

‘2 + 2’ ‘4’

evaluates

formalizationexpresses

evaluates

Fig. 2. An example of CTT semantics of non-empirical expressions

Now that we have briefly acquainted ourselves with the notions of a type
and a computation, let us return back to propositions. So what exactly is a
proposition in CTT? Analogously to what has been said above, to be able to
judge that some A is a proposition, we have to know how to form its canonical
objects and under what conditions two canonical objects are equal, i.e., provide
rules for constructing its canonical proofs and equal canonical proofs.

Furthermore, a proposition A is considered true when we have a proof a of
A. And in order to be able to judge that we have a proof a of A, we have to
know that A is a proposition and that a is a method that yields upon execution a
canonical proof of A as a value.13 For example, the canonical proofs (objects) and
equal canonical proofs of the proposition A → B are specified by the following
pair of rules:

[x : A]

b(x) : B

λx.b(x) : A→ B

[x : A]

b(x) = c(x) : B

λx.b(x) = λx.c(x) : A→ B

What is the canonical proof λx.b(x) of the proposition A → B? It is an object
– a lambda coding – that codes a function which takes a proof a of A and
transforms it into a proof b(a) of B (compare this with the BHK interpretation
for implication in Fig. 1).

Analogously to the case above with non-canonical natural numbers such as,
e.g., 2 + 2 : N , we can have non-canonical proofs of propositions as well. For
example, consider the following derivation:

f : (A→ B)→ (C → D) g : (A→ B)

ap(f, g) : C → D

The proof ap(f, g) of C → D is non-canonical because it does not have the form
prescribed by the introduction rules for implicational propositions, i.e., λx.b(x).
However, the non-canonical object ap(f, g) is a method of obtaining a canonical
object of C → D. How to execute it? We have f : (A → B) → (C → D)
which means that f is a method which yields a canonical object λx.c(x) of
(A → B) → (C → D). Now, let us take g : (A → B) and substitute it for
x in c(x). Thus we get c(g) : C → D and when we execute c(g) it will yield

13 It is an open question how to best carry over this approach to empirical discourse.
See, e.g., [27], [32], [26].
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a canonical object of C → D, i.e., something of the form λy.d(y). For a more
thorough exposition, see [14].

Note, however, that all the computations discussed so far were concerned
exclusively with objects, specifically, with reducing non-canonical objects into
canonical ones. For example, 2 + 2 : N was computed to s(2 + 1) : N or
ap(f, g) : C → D was computed to c(g) : C → D. But what about comput-
ing with propositions themselves? This is, after all, our main interest. To extend
computations towards propositions, we utilize the notion of a non-canonical type
introduced in [9].

Through the propositions as types principle, this naturally applies to proposi-
tions as well. Following [9] (p. 91, def. 6), let us define a non-canonical proposition
A as a proposition that has a canonical proposition as the value.14 The fact that
the non-canonical proposition A has the canonical proposition B as value will
be denoted as

A⇒ B : prop

and can be read as ‘a proposition A computes to a proposition B’. The mean-
ing of these proposition-computability judgments will be specified inferentially
by the corresponding computation rules whose conclusions will take the general
form A⇒ B : prop (see, e.g., the computation rule for ¬comp below). Further-
more, again following [9] (p. 97), we adopt explicit definitions of non-canonical
propositions of the following form: D =def A : prop where A is a proposition
(not necessarily canonical) and D is a new undefined non-canonical proposition.
Basically, it tells us that A is the value for the non-canonical proposition D. For
example, our motivating case involving the definition of intuitionistic negation
can be formalized as ¬A =def A → ⊥ : prop which justifies a computational
step from ¬A to A → ⊥ that can be captured as follows ¬A ⇒ A → ⊥ : prop.
The corresponding proposition computation rule (read bottom-up) will be then
as follows:

A→ ⊥ ⇒ A→ ⊥ : prop ¬comp
¬A ⇒ A→ ⊥ : prop

with ¬A being a non-canonical proposition and A → ⊥ being a canonical one.
In other words, A→ ⊥ is the value of the computable proposition ¬A. From the
above considerations, it also follows that ¬A = A→ ⊥ : prop, i.e., that they are
equal propositions. 15

14 For a proper specification, see [9], especially sections § 4. Noncanonical sets and
elements and § 5. Nominal definitions. It is also worth to note that non-canonical
propositions/sets are already considered in [13], however, as opposed to [9], no ded-
icated proposition-computability judgments of the form A⇒ B : prop are used.

15 Of course, more complex reductions for other logical and/or mathematical proposi-
tions can be introduced. For example, [24] (pp. 41-42) shows how we can in CTT
define, and thus reduce the propositional function prime(x) (assuming x : N) into
more basic concepts. Formulating the corresponding computation rule based on the
provided definition is then straightforward.
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Now, returning to our empirical case, let us assume the following definition:
bachelor(x) =def man(x) ∧ ¬married(x) which can be unpacked, analogously
as above, into the following three steps. First, we postulate that bachelor(x) :
prop assuming x : A, i.e., that bachelor(x) is a propositional function taking as
arguments objects of some type A (analogously with married(x) and man(x)).
Then we add the corresponding computation rule (again, assuming x : A):

man(x) ∧ ¬married(x) ⇒ man(x) ∧ ¬married(x) : prop

bachelor(x) ⇒ man(x) ∧ ¬married(x) : prop

Note that here we are taking man and married as basic, further non-computable
concepts.

And finally, we have to show that bachelor(x) and man(x) ∧ ¬married(x)
are equal propositional functions, which follows from our computation rule:
since both bachelor(x) and man(x) ∧ ¬married(x) have the same canonical
forms, we can judge that they are equal propositional functions producing equal
propositions. In other words, non-canonical propositions are equal, if their cor-
responding canonical propositions are equal. To sum it up, the proposition
man(Charles) ∧ ¬married(Charles) : prop is a canonical, i.e., further irre-
ducible proposition and bachelor(Charles) is a non-canonical proposition that
can be computed to man(Charles)∧¬married(Charles) : prop. For an example
of the corresponding expanded semantic scheme for computable propositions, see
Fig. 3.16

Charles is a bachelor Charles is a man ∧ ¬(Charles is married)

‘Charles is a bachelor’ ‘Charles is a man and unmarried’

evaluates

formalizationexpresses

evaluates

Fig. 3. An example of CTT semantics of empirical expressions

To conclude, in CTT we can approach the notion of a computable proposition
via the notion of a non-canonical type introduced by [9], i.e., non-canonical con-
structive sets in a more standard terminology. This explication rests on two main
principles: identification of propositions with types (i.e., the Curry-Howard iso-
morphism) and capturing computation in terms of the reduction of non-canonical
objects to canonical ones.

In the following section, we will examine how TIL approaches the notion of
a computable proposition.

16 Note that our approach has nothing further to say about the meaning of the con-
juncts of this canonical proposition. More specifically, the meaning of atomic empir-
ical propositions such as man(Charles) is assumed to be given externally.
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3 Non-constructive tradition

As far as we know, it was Pavel Tichý ([28]) who first explicitly suggested to
understand meanings of natural language expressions in terms of computations
in the late 1960s, specifically in his paper Intension in terms of Turing machines:

. . . the fundamental relationship between sentence and procedure is obviously
of a semantic nature; namely, the purpose of sentences is to record the outcome
of various procedures. Thus e.g. the sentence ‘The liquid X is an acid’ serves
to record that the outcome of a definite chemical testing procedure applied to
X is positive. ([28], p. 7)

Tichý saw in Turing machines an opportunity to finally explicate Frege’s notion
of sense in rigorous terms. Eventually, however, Tichý replaced Turing machines
with constructions. Constructions were understood as abstract computations
codifying the procedures for computing denotations of the corresponding natural
language expressions. Tichý subsequently developed his ideas into a system called
transparent intensional logic presented in ([30]), which is still being actively
developed (see, e.g., [7], [21], [22]).

3.1 Transparent intensional logic

As we have seen in CTT, the notion of a proposition is ultimately grounded in
the notions of a type and a computation. In transparent intensional logic (TIL,
[30]), the notion of a proposition can also be explained in these notions, however,
the notions of a type and a computation in TIL differ from those of CTT.

First of all, the fundamental notion of computation in TIL, i.e., a construc-
tion, is much broader in comparison with the stricter constructive notion of
effective computation found in CTT. It encompasses even non-computable and
ill-specified procedures. As Tichý puts it:

[N]ot every construction is an algorithmic computation. An algorithmic com-
putation is a sequence of effective steps, steps which consist in subjecting a
manageable object (usually a symbol or a finite string of symbols) to a feasible
operation. A construction, on the other hand, may involve steps which are not
of this sort. [. . . ]. As distinct from an algorithmic computation, a construction
is an ideal procedure, not necessarily a mechanical routine for a clerk or a
computing machine. ([29], p. 526)

Thus, constructions should be viewed as idealized, abstract, not necessarily ef-
fective computations that need not be realizable either by a human or a machine.
This more general approach towards computations is reflected in the treatment
of types as well. In comparison with CTT, very little is required of them, no
canonical objects have to be presented, no criterion of identity is required.17

17 From this perspective, TIL types are much closer to categories in CTT (i.e., types in
proper CTT terminology), but even a category is a stricter notion as it has to come
with a criterion of application and identity, which is not the case with TIL types.
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Specifically, types are understood simply as non-empty pairwise disjoint collec-
tions ([30], p. 65). No further stipulations are given of what can and cannot
constitute such a collection.

So what is a proposition in TIL?18 In order to understand what a proposi-
tion is we have to better understand Tichý’s notion of a construction. First, it is
important to make clear what is really meant in TIL when it is said that proposi-
tions can be computed to yield their denotations (for the basic Fregean semantic
scheme of TIL, see Fig. 4). In most current instances of TIL when one talks
about denotations of propositions, they do not mean truth values (understood
as references of sentences) but functions from possible worlds to truth values.19

Actual truth values cannot be, of course, computed and the task of determining
them is delegated to empirical investigations. Thus, in TIL, we can compute
the denotations of empirical sentences, but we cannot compute their references
(i.e., truth values). Hence, the problem of computing truth values of empirical
sentences is effectively sidestepped by distinguishing between denotations and
references. This, however, does not apply to non-empirical expressions, where
denotations and references are typically conflated.

construction

expression denotation

computesexpresses

denotes

Fig. 4. Semantic scheme of TIL

For example, the non-empirical expression ‘2+2’ is understood as expressing
the arithmetical construction [2 + 2] that computes (or constructs, in standard
terminology) the number 4, i.e., an object of type ν, where ν is the type of natural
numbers, which can be regarded as both the denotation and the reference of ‘2+2’
(see Fig. 5).20 In contrast, the empirical sentence ‘Charles is a bachelor’ expresses
the proposition λw[[Bachelor w] Charles] which computes its denotation, i.e.,
a function of type (oω), where o is the type of truth values and ω is the type of

18 In standard TIL terminology, the term ‘hyperproposition’ is used instead and the
term ‘proposition’ is reserved for functions from possible worlds and time moments
to truth values. We will diverge from this terminology.

19 In standard TIL, denotations of propositions are understood as functions from pos-
sible world and time moments to truth values, however, we omit the time parameter
for simplicity here.

20 The purpose of the bold font is, simply put, to distinguish between the constructional
level and non-constructional level. Let us take, e.g., 2 and 2. What is the difference
between them? The former is a construction, the latter is a constructed object. In
other words, 4 can be understood as a trivial computation that yields the number 4
as a result. Furthermore, we now switch to the standard TIL notation with square
brackets to better distinguish its expressions from those of CTT.
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possible worlds. And only an empirical investigation can tell us what its reference
is, i.e., whether it is true or false (see Fig. 6). Thus, when we are computing
propositions in this sense, we are not searching for truth values, but for the
corresponding functions from possible worlds to truth values.

[2 + 2]

‘2 + 2’ 4

computesexpresses

denotes

Fig. 5. An example of TIL semantics of non-empirical expressions

λw[[Bachelor w] Charles]

‘Charles is a bachelor’ function of type (oω)

computesexpresses

denotes

Fig. 6. An example of TIL semantics of empirical expressions

This notion of computation is, however, rather informal as it comes with
no general instructions or computation rules telling us how should the evalua-
tion of such computations proceed. Furthermore, it takes us from the level of
constructions to a different level, specifically, a level of denotations, i.e., non-
constructions (e.g., natural numbers, truth values, individuals).21 Consequently,
this notion of a computation does not seem to be providing a satisfactory ground
for explaining the notion of a computable proposition.

Fortunately for us, in TIL, another notion of a computation is identifiable
that is much more similar to the notion of a computation in CTT. It comes with
explicit computation rules (β-reductions) and the results of these computations
do not leave the level of constructions, i.e., the results of such computations have
the same type as the computations themselves. Following [17], let us call this
new notion of a computation as a syntactic (‘machine-oriented’) notion of a com-
putation and let us refer to the notion of a computation we have considered so
far as a semantic (‘human-oriented’) notion of a computation. The main concep-
tual difference between these two notions is that a semantic computation takes
us from constructions to their denotations, while a syntactic computation takes

21 Strictly speaking, in TIL we can have higher-order constructions that yield lower-
order constructions as their denotations, but for simplicity of presentation, we omit
these cases here.
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us from constructions to other constructions, but never to their denotations. If
we add the syntactic computation layer to the original semantic scheme of TIL
presented earlier, we get a scheme closer to the one of CTT (see Fig. 7).22

[2 + 2] 4

‘2 + 2’ 4

computes sem.

computes syn.

computes sem.expresses

denotes

Fig. 7. An example of an expanded TIL semantics of non-empirical expressions

How is this relevant to computable propositions? When we are computing
propositions in this syntactic sense, we are not searching for truth values (refer-
ences) or functions from possible worlds to truth values (denotations) but rather
for the simplest possible procedure for evaluating the truth conditions of the
corresponding sentence. To better explain this, let us consider the following ex-
ample. To mirror the initial intuitionistic case of defining ¬A as A → ⊥, let
us examine a classical case of defining A → B as ¬A ∨ B. In TIL, this could
be formalized as: λAB[A → B] =def λAB[¬A ∨ B]. Analogously to the CTT
approach, the implicational proposition λAB[A → B] can be understood as a
defined proposition computable to its canonical form λAB[¬A∨B]. The form of
the corresponding computation rules would then be similar to those of CTT:23

λAB[¬A ∨B] ⇒ λAB[¬A ∨B] → comp
λAB[A→ B] ⇒ λAB[¬A ∨B]

The same approach could also be applied to empirical cases. For example, when
we compute the proposition λw[[Bachelor w] Charles] in this syntactic sense,
the result we should expect is not a truth value, but rather the canonical form
of the procedure for determining the truth value of the corresponding sentence,
which might be, e.g., set by the following definition (B is an abbreviation of
Bachelor, C of Charles, etc.):

λw[[B w] C] =def λw[λx[[[M w] x] ∧ [¬[Mar w] x]] C]

which is, arguably, a more perspicuous test procedure (assuming it is simpler to
check whether someone is a man and unmarried than that they are a bachelor).

22 Note that in comparison with CTT’s semantic scheme, here we have three levels of
objects: syntactic (the expression ‘2 + 2’), semantic (the construction [2 + 2]), and
denotational (the natural number 4). Recall that in CTT, there are only two levels:
syntactic and semantic. In other words, in TIL the semantic level is distinguished
further into constructional and denotational levels.

23 This is only a sketch, for proper accounts of definitions/computation rules in TIL,
see, e.g., [7], section 2.2.2 Concepts and definitions or [22], section 3.2 Matches,
sequents and rules.
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The computation rule will then be as follows (to save some space, let M represent
the proposition λw[λx[[[M w] x] ∧ [¬[Mar w] x]] C]):

M ⇒ M
λw[[B w] C] ⇒ M

So, how can we compute with propositions in TIL? Analogously to CTT, we
can approach this issue through the idea of defined and primitive propositions.
However, in TIL the key difference between these two kinds of propositions will
not be the presence or absence of direct proof conditions, but rather whether
or not they contain primitive or derived concepts with respect to some concep-
tual system. In other words, by a canonical proposition we will understand a
proposition that contains no derived concepts.

What are conceptual systems? Conceptual systems are, roughly put, applied
instances of TIL tailored for a specific purpose (see [7], [23]). Thus, we can have,
e.g., conceptual systems for propositional logic, conceptual systems for predicate
logic, conceptual systems for reasoning about multiagent systems, etc. Formally,
a conceptual system is a tuple 〈Pr, Type, V ar, C,Der〉 where Pr is a finite class
of primitive concepts P1, . . . , Pk, i.e., basic objects of the system, Type is an in-
finite class of types generated over a finite collection of base types (e.g., o, ι, ν for
truth values, individuals, and natural numbers, respectively), V ar is an infinite
set of variables, countably infinite for each type from Type, C is the definition
of kinds of basic TIL constructions, and Der is an infinite class of compound
concepts derived from Pr and V ar utilizing C. From this perspective, assuming
a conceptual system CS1 where B and C are simple, further undefined con-
cepts, i.e., Pr1 = {B,C}, the proposition λw[[B w] C] would be considered as a
canonical one. However, assuming some other conceptual system CS2 where B
is treated as a derived concept with Pr2 = {M,Mar,∧,¬}, then the proposition
λw[[B w] C] will be non-canonical and computable to the canonical proposition
λw[λx[[[M w] x] ∧ [¬[Mar w] x]] C] (see Fig. 8), which represents the most
direct procedure for evaluating the truth conditions of the corresponding sen-
tence (in the given conceptual system). For our logical example, we could use
a conceptual system CS3 with Pr3 = {¬,∨}, which would render the proposi-
tion λAB[A → B] non-canonical and the proposition λAB[¬A ∨ B] canonical.
Thus, the status of canonicity of propositions will depend on the choice of the
underlying conceptual system.

λw[[B w] C] λw[λx[[[M w] x] ∧ [¬[Mar w] x]] C]

‘Charles is a bachelor’ function of type (oω)

computes sem.

computes syn.

computes sem.expresses

denotes

Fig. 8. An example of an expanded TIL semantics of empirical expressions
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To conclude, in TIL we can approach the notion of a computable propo-
sition via the notion of a (hyper)proposition, i.e., a construction that yields
upon execution a function from possible worlds to truth values. This explication
rests on three main principles: distinguishing between denotations and refer-
ents of empirical sentences, discerning between syntactic and semantic notions
of computations, and capturing the notion of syntactic computation in terms of
a reduction of non-canonical proposition to canonical ones within a scope of a
given conceptual system.

4 Conclusion

In this paper, we have discussed two computational approaches to the semantics
of empirical sentences that are based on the Fregean sense-denotation distinction.
However, since the truth values – denotations in Frege’s approach – of sentences
cannot be in general computed, these approaches had to modify the original
scheme by changing what should be regarded as a denotation of an empirical
sentence. Both approaches agree that it cannot be truth values and propose
that it should be propositions. However, their respective notions of propositions
differ. When a CTT-based approach proposes that a denotation of an empirical
sentence is a proposition, what is meant is a canonical proposition and a proposi-
tion is understood intuitionistically, i.e., as a constructive set of its truth makers.
On the other hand, when a TIL-based approach proposes that a denotation of
an empirical sentence is a proposition, a proposition is understood as a function
from possible worlds to truth values. Thus, in CTT the relation between mean-
ing and denotation holds between objects of different types than in TIL. In the
former it holds between propositions, in the latter it holds between propositions
and functions.

This is not the only difference. Their respective notions of denoting under-
stood as the relation between sense and denotation also diverge. CTT essen-
tially identifies the notion of denoting with the notion of effective (syntactic)
computation. In TIL, however, denoting is rather identified with the notion of
constructing, i.e., the notion of not necessarily effective (semantic) computation.
However, that does not mean that we cannot make sense of the notion of ef-
fectively (syntactically) computable propositions in TIL. It just means that if
we compute with propositions in this sense, we can never get to their denota-
tions, just to their canonical forms. This is in contrast to CTT, where canonical
propositions and denotations are identified. The relation between propositions
and their corresponding canonical forms in TIL is best seen as analogous to the
same distinction in CTT, i.e., it should be viewed in terms of effective (syntactic)
computability based on the underlying notion of definitional equality. So, from
the TIL perspective, CTT conflates the notions of semantic and syntactic com-
putability. Or, from the CTT perspective, TIL muddies the notion of computing
by splitting it into two further notions of syntactic and semantic computability.
It remains, however, an open question which of these approaches might generally
prove to be more productive when dealing with natural language analysis.
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To conclude, the key difference between CTT’s and TIL’s understanding
of meaning of empirical sentences, i.e., computable propositions, lies in their
respective ideas of what should constitute their corresponding denotations and
how we should be able to reach them. CTT identifies denotations with canonical
propositions, while TIL keeps them separate. In CTT, denoting has to be an
effective procedure, while no such requirement is present in TIL. However, even
though in TIL the procedure of getting from a proposition to its denotation
is ineffective, the process of getting from a proposition to its canonical form is
effective.
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