
Going Nowhere and Back: Is
Trivialization the Same as Zero

Execution?

Ivo Pezlar
Czech Academy of Sciences, Institute of Philosophy

pezlar@flu.cas.cz

Abstract

In this paper I will explore the question whether the Trivial-
ization construction of transparent intensional logic (TIL) can
be understood in terms of the Execution construction, specifi-
cally, in terms of its degenerate case known as the 0-Execution.
My answer will be positive and the apparent contrast between
the intuitive understanding of Trivialization and 0-Execution
will be explained as a matter of distinct yet related informal
perspectives, not as a matter of technical or conceptual differ-
ences.

1 Introduction and motivation
One of the most prominent features of transparent intensional logic
(TIL, [9], [1], [8]), and simultaneously the source of much puzzlement
for TIL newcomers, is the Trivialization construction, which more or
less acts as a procedural analogue of a constant. For example, an ab-
straction term λx.x+1 of lambda calculus with constants corresponds
to a Closure construction λx[x ′+ ′1] of TIL, where the prime symbol
‘′’ indicates Trivialization constructions, namely Trivializations of the

This work was supported by the Lumina quaeruntur fellowship awarded by the
Czech Academy of Sciences (registration number: LQ300092101).



Pezlar

addition function + and of the number 1, respectively.1 A lot has
been already written about Trivialization and its justification and I
do not wish to add to that literature. Instead I want the explore the
question whether Trivialization can be understood in terms of another
TIL construction known as Execution, specifically, in terms of its de-
generate case known as the 0-Execution (read as “Zero Execution”).
Although it is not an issue of great practical importance from the
viewpoint of natural language semantics, it touches on fundamental
theoretical aspects of TIL, which, I believe, make it a topic worthy of
a closer look.

The goal of this paper, and I wish to emphasize this point, is not
to argue for the removal of Trivialization from TIL, but to examine
whether it can be understood as Execution, specifically, 0-Execution.2
Ideally, it might also help TIL newcomers to more quickly grasp the
main idea of the construction denoted by the unnecessary-looking but
crucially important symbol ‘′’.

Finally, it is worth mentioning that the idea of treating Trivializa-
tion as 0-Execution is not a new one and it has been floating around
the TIL community for some time (at least since [6]) but only recently
it gained more attention ([3], [4], [7]). In this paper, I want to reopen
this issue, revisit some of the previous arguments, and offer a new
perspective on the Trivialization vs. 0-Execution debate.

2 Trivialization vs. 0-Execution
Can we regard Trivialization construction in the terms of 0-Execution
construction? Or more bluntly put, is Trivialization the same con-
struction as 0-Execution or are they distinct? To get a better grasp

1In the literature, Trivialization is most commonly denoted by the superscript
‘0’ not by ‘′’. In this paper, however, I reserve the symbol ‘0’ for denoting 0-
Execution. To ensure notational consistency I apply this convention to quotations
as well.

2I use this opportunity to revisit one of my earlier discussions with prof. Marie
Duží on the same topic. In the past, she was firmly against viewing Trivialization
as 0-Execution and with this paper I would like to, if not to change her mind, at
least to sow there a seed of doubt.



Going Nowhere and Back

of the issue, let us assume that Trivialization and 0-Execution are
indeed two distinct constructions. Let us denote the instances of the
former as ′X and of the latter as 0X where X is any entity whatsoever
(within the scope of the ramified type hierarchy of TIL).

Our task will be to show that every role that is typically played by
Trivialization can also be played by 0-Execution. I will investigate this
issue from two aspects: technical and conceptual. From the technical
aspect, we want to check if every instance of ′X can be replaced by
0X (without affecting the procedural behaviour of the construction in
the sense that it still produces the same output in the same way, i.e.,
that it is still the same construction). From the conceptual aspect,
we want to check if all the standard intuitions typically associated
with Trivialization can be preserved when dealing with 0-Execution.
In other words, do we lose something if we view Trivialization as 0-
Execution?

If no crucial discrepancies between Trivialization and 0-Execution
of this sort are found, I believe we are warranted in claiming that
Trivialization and 0-Execution can be understood as the same con-
struction, just viewed from different perspectives, namely from the
destination perspective and the path perspective, respectively (I will
discuss these later).

For the purposes of this paper, from now on I will distinguish be-
tween Trivialization and Execution understood as different kinds of
constructions, and Trivialization and Execution understood as specific
instances of these kinds of constructions. I will write the former with
capitalized first letters (Trivialization, Execution, . . . ) and the letter
without capitalization (trivialization, execution, . . . ). We can think of
this distinction as similar to the distinction between axiom schemata
and their particular instances. For example, we can say that ′5, ′Alice,
and ′[′5 ′+ ′7] are all trivialization constructions, or trivializations for
short. Or, alternatively, we can say that ′5, ′Alice, and ′[′5 ′+ ′7]
are specific instances of the Trivialization construction kind (distinct
from other construction kinds such as Closure, Composition, etc.).
Thus, when [2] says that “Trivializations are the one-step or primitive
or atomic constructions of TIL” (p. 329) from our viewpoint he talks



Pezlar

about Trivialization as a general construction kind, but when [1] say
phrases like “the meaning of ‘cow’ (here the Trivialization ′Cow)” (p.
231), from our viewpoint they talk about a specific instance of the
Trivialization construction kind, namely ′Cow. In short, in the first
case we are talking about Trivialization understood as a kind of con-
struction, in the second case, we are talking about specific instances of
thereof. This distinction might seem pedantic, but it will become use-
ful later. Specifically, it will help us to better unpack some conceptual
issues surrounding Trivialization and 0-Execution.

3 What is Trivialization?
Trivialization is an atomic construction, denoted as ′X, and its main
role is to pick definite objects that the compound constructions of TIL
can operate on. Specific trivializations can be compared to constants,
as they fulfil a similar role.

First, let us start by reviewing some of the standard specifications
of Trivialization found in the literature. [9] originally specified it as
follows:

Where X is any entity whatsoever, we can consider the trivial
construction whose starting point, as well as outcome, is X it-
self. Let us call this rudimentary construction the trivialization
of X and symbolize it as ′X. To carry ′X out, one starts with
X and leaves it, so to speak, as it is. ([9], p. 63)

Compare with [1]:

Trivializations match constants, by picking out definite entities
in just one step. ([1], p. 9)
When X is an object of any type (including a construction),
the Trivialization of X, denoted ‘′X’, constructs X without the
mediation of any other constructions. ′X is the unique atomic
construction of X that does not depend on valuation: it is a
primitive, non-perspectival mode of presentation of X. ([1], p.
43)
It constructs X without any change. ([1], p. 45)



Going Nowhere and Back

And also with [7] (similarly in [8]):

Every construction is a mode of presentation of a certain
object [. . . ] ′X presents X as it is (without any change of
X) ([7], p. 52)

Thus, we could say that the key aspect of Trivialization ′X is that
it does nothing with X, that it does not change X in any way.3

Note. It is worth pointing out that [9] considered even Trivializa-
tions and Executions of nonconstructions to have constituents (“Vari-
ables are the only simple constructions; all other constructions have
constituent parts.” [9], p. 63). This is not the case in [1] and later,
where even Trivialization and Execution of nonconstructions are con-
sidered “partless”, i.e., atomic ([1]):

Definition 2.17 (atomic construction) A construction C is
atomic if C does not contain any other constituent but itself.
Corollary. A construction C is atomic if C is

• a variable; or
• a Trivialization ′X, where X is an entity of any type, even

a construction; or
• an Execution 1X or a Double Execution 2X, where X is

an entity of a type of order 1, i.e., a nonconstruction.

An atomic construction of kind (i) or (ii) is v-proper for any
valuation v. An atomic construction 1X, 2X, of kind (iii), is
v-improper for any valuation v. In this case 1X or 2X does not
v-construct anything, and 1X → α, 2X → α, for any type α,
would constitute a type-theoretic mismatch. ([1], pp. 247–248)

At first, it might seem somewhat surprising that we can encounter
executions that are atomic constructions as well as executions that are

3Later, I will argue that this naturally leads to viewing Trivialization as a
degenerate case of Execution, specifically, 0-Execution.



Pezlar

nonatomic, i.e., compound constructions. I believe distinguishing be-
tween kinds of constructions and their specific instances (as discussed
above) can help us here. Being atomic or compound construction is
a property of executions understood as specific constructions, not of
Executions understood as construction kinds. Thus, there is nothing
extraordinary about the fact that we can have executions that are
atomic, but also executions that are compound.

4 What is 0-Execution?
0-Execution is an atomic construction, denoted as 0X, and it is under-
stood as the limiting case of Execution construction kind which also
includes Single Execution4 and Double Execution, denoted 1X, 2X,
respectively. The main idea is that while Single Execution tells us to
execute X once, and Double Execution tells us to execute X twice,
or more precisely, to execute X and then execute again the result we
obtain (if any), 0-Execution tells us not to execute X, just to leave
it as it is. It is simply the degenerate case of Executions when the
number of consecutive executions equals 0. Its main role is to tell us
what should not be executed.5

In the literature, we can find the following specifications of 0-
Execution. For example, [3] introduces it as follows:

Since 1X and 2X are Single and Double Execution, respectively,
it would be natural if 0X was known as Zero Execution. In fact,
whereas ‘Trivialization’ gives the wrong idea about Trivializa-
tion, which is anything but trivial, ‘Zero Execution’ sums up
what 0X is all about: 0X displays X. If X is a procedure, then
0X does not proceed to executing X. This is in fact the gist
of Tichý’s original definition that 0X produces X without any

4Single Execution would be also an interesting topic for a further investigation
as it seems often overlooked for its apparent “simplicity”. In this paper, I will,
however, not discuss it further.

5Mind you, it does not mean that 0X should not be executed, only that X
itself should not be executed. However, using the standard conceptual framework
of TIL, the X itself is “invisible”, since 0-executions are considered to be atomic
constructions (as are trivializations).



Going Nowhere and Back

change of X. In this paper, however, I will stick to the original
term ‘Trivialization’ for continuity. ([3], p. 1320)

Similarly [4]:

If we should understand 1X as ‘execute X’ (i.e., ‘1’ = one ex-
ecution) and 2X as ‘execute X and then execute its result X’
(i.e., ‘2’ = two executions), then, arguably the most natural
reading of 0X—if we have never heard of trivialization—is ‘do
not execute X’ (i.e., ‘0’ = zero executions). ([4], p. 203)

Thus, analogously to Trivialization, the key aspect of 0-Execution
0X is that it does nothing with X.

5 Technical aspects
Assume that X is any entity whatsoever and that we have a trivial-
ization of X, denoted ′X, and a 0-execution of X, denoted 0X. We
want to show that the procedural behaviour of ′X and 0X is the same.
There are eight cases in total we have to consider: first, whether X
is a nonconstruction or a construction, second, if it is a construction,
what kind of construction. Although it might seem as unnecessary, I
believe it will be instructive to present each case separately to better
understand the relationship between 0-Execution and Trivialization.

1. X is a nonconstruction: ′X produces X, analogously 0X pro-
duces X,

2. X is a construction:

(a) X is a variable: ′x produces x, analogously 0x produces x,
(b) X is a closure: ′[λx1 . . . xmX] produces [λx1 . . . xmX], anal-

ogously 0[λx1 . . . xmX] produces [λx1 . . . xmX],
(c) X is a composition: ′[XX1 . . . Xm] produces [XX1 . . . Xm],

analogously 0[XX1 . . . Xm] produces [XX1 . . . Xm],
(d) X is a trivialization: ′′X produces ′X, analogously 0′X

produces ′X,



Pezlar

(e) X is a 0-execution: ′0X produces 0X, analogously 00X
produces 0X,

(f) X is a 1-execution (single execution): ′1X produces 1X;
analogously 01X produces 1X,

(g) X is a 2-execution (double execution): ′2X produces 2X;
analogously 02X produces 2X.

As we can see, both Trivialization and 0-Execution proceed in the
same manner for all entities X: it just takes them and returns them
without any change.

6 Conceptual aspects

So far it seems that the whole issue of Trivialization vs. 0-Execution
is just a terminological dispute based on personal preference. Trivial-
ization seems to be fully explainable, and thus replaceable, in terms
of 0-Execution. This assessment would be, however, too rushed as
it does not tell the whole story. Despite the considerations above,
not all TIL researchers, prof. Marie Duží included, would agree that
Trivialization can be viewed as 0-Execution.

What are the main objections against viewing Trivialization as
0-Execution? The five most important objections are, I believe, the
following:

Objection 1: Trivialization binds free variables, Executions
do not.

Reply: It is true that 1-Executions and higher do not bind free vari-
ables, but 0-Execution is not just another Execution. As we said,
it is not only a limiting case but a degenerate case of Execution.
And since degenerate cases exhibit qualitative differences from non-
generate ones (e.g., a point can be considered as a degenerate case of a
circle with radius 0), it should not be surprising that 0-Execution can
have different properties than non-0-Executions. Especially, if these
properties are necessary side effects of its specification. Recall that



Going Nowhere and Back

0-Execution is essentially an instruction to “do nothing with X”, to
not change it in any way. If 0-Execution would not bind free variables,
X might change with respect to a valuation or a substitution. And
if so, it would no longer be 0-Execution, since something was done
with X, it was not left as it was (see also [4], p. 205). Thus, the fact
that 0-Execution binds free variables is not only unsurprising but to
be expected.

Objection 2: Trivialization is always proper, Executions are
not.

Reply: Analogous reasoning as above applies. In short, 0-Execution
is a degenerate case of Executions and as such it exhibits different
qualitative properties. The fact that 0-Execution is always proper
construction can be explained with respect to its specification. The
construction cannot fail, because, simply put, there is no possibility
for it to do so: it just takes X and produces X back without any
change.

Objection 3: Trivializations are always atomic constructions,
but Executions can be atomic as well as compound.

Reply: True, but if anything, this fact rather supports the idea that
Trivialization is a special case of Executions, since Executions appear
to be a more general notion from this viewpoint: we can have atomic
executions (including 0-executions) and compound executions, but we
cannot have compound trivializations, only atomic ones.

Objection 4: Trivialization supplies entities for compound
constructions, Executions do not.6

Reply: Analogous to replies to objections 1 and 2. In short, there is no
reason why we cannot view the supplying of entities just as another

6See, e.g., “There are two atomic constructions that supply entities (of any
type) on which complex constructions operate: Variables and Trivializations.” ([1],
p. 42) This, however, also brings up the question what is the purpose of the other
atomic (although improper) constructions such as 1X when X is a nonconstruction.



Pezlar

degenerate aspect of 0-Execution.7

Objection 5: Trivialization is a dual operation8 to Double
Execution: Trivialization raises context, while Double Ex-
ecution decreases it and Trivialization cancels out Double
Execution.9

Reply: Statements like “Double Execution suppresses the effect of
Trivialization. More generally, Double Execution decreases the level
of a context.” ([1], p. 239) or “Unlike Trivialization, which is an oper-
ation of mentioning, Execution and Double Execution are operations
of using.” ([1], p. 239) are not incorrect, but they are somewhat
imprecise.

Why is that? Because it is not the case that Double Execution
always suppresses the effect of Trivialization or that Trivialization is
always an operation of mentioning. As a counterexample to the first
statement, consider a construction 2′X where X is a nonconstruction:
here 2 cannot suppress ′, because if it did, we would end up with just
X which is a nonconstruction. In other words, the “cancelling-out”
process would transform a construction into a nonconstruction, which
certainly cannot be correct.10 As a counterexample to the second
statement, consider a construction ′X where X is a nonconstruction.
And since mentioning is defined only for constructions (see [1], p.
234), Trivialization cannot be here used for mentioning.

So, general statements like “Trivialization raises context” and sim-

7Furthermore, we should not forget that we can have compound construc-
tions that contain no Trivialization, 0-Execution or Variable, e.g., a composition
[15 1+ 17]. True, it is an improper construction, but still a construction. So,
even though 1-Execution of nonconstructions and higher cannot supply entities on
which compound constructions can operate, they can in a way indirectly refer to
them (e.g., 15 effectively tells us that “5 is not a construction”) and be used to
construct compound, albeit improper, constructions.

8I use the term “operation” in the sense of [1], i.e., an operation understood
as a process, not in its more standard sense as a function/mapping.

9See, e.g., [3], p. 1320.
10The fact that 2′X is an improper construction does not change anything:

improper constructions are still constructions.



Going Nowhere and Back

ilar are slightly misleading as they do not present the whole picture.
The duality applies only to specific instances of Trivialization and
Execution, namely to those of the form ′C and 2′C where C is a con-
struction. But these cases do not exhaust all possible instances of
Trivialization and Execution. Hence, the raising/lowering of context
is not an inherent property of Trivialisation/0-Execution construction
kind, but only of their specific instances ′X/0X where X is a construc-
tion. Thus, let us try to amend the original statements: trivializations
of constructions raise context, while double executions decrease it and
trivializations of constructions are cancelled by double executions.

Now, how can we explain this aspect of Trivialization, i.e., that
it can mention constructions and thus give rise to hyperintensional
contexts, in terms of 0-Execution? Again, the strategy is analogous
as above: since 0-Execution is the degenerate case of Execution, spe-
cial properties are to be expected. And, arguably, 0-Execution of-
fers an even more intuitive explanation of its ability to mention con-
structions than Trivialization does. Consider, e.g., a construction
λwλt[0Calculateswt

0Alice 0[05 0+ 07]] presented as a result of a se-
mantic analysis of the sentence “Alice calculates 5 + 7”. Since Alice
is engaged in the calculation process itself and not in its result, the
construction [05 0+ 07] corresponding to this calculation should not
be executed in the respective semantic analysis. And that is precisely
what “0[05 0+ 07]” stands for, i.e., it tells us to “execute [05 0+ 07] zero
times”.

In short, it seems there is no property typically associated with
Trivialization that could not be associated with 0-Execution and ex-
plained by the fact that 0-Execution is the degenerate case of Execu-
tion, hence it is bound to have different properties from 1-Execution
and higher. Moreover, we have shown that these degenerate proper-
ties naturally arise from the specification of 0-Execution (e.g., binding
of free variables as a necessary side effect of the fact that 0-execution
0X should not change X in any way).

So what is Trivialization? Is it just an alternative title for 0-
Execution? 0-Execution definitely seems to have enough distinctive
properties (binding, properness, supplying objects, . . . ) that would



Pezlar

warrant giving it a special name such as “Trivialization”, similarly
as, e.g., a set with a single element is also given a special name of
“singleton”. But if we choose to view Trivialization this way, we have
to keep in mind that there is still 0-Execution running (or rather,
Execution not running) under the hood of Trivialization, so to speak.

So far I have only discussed reasons why we can regard Trivializa-
tion as 0-Execution, however, I have not said much about why should
we, i.e., what are the advantages of this approach. This is intentional,
as my goal is not to argue for getting rid of the notion of Trivialization
and relying instead solely on 0-Execution. I only wanted to show that
Trivialization can be replaced by 0-Execution, that there is nothing
that would prevent us from doing so, both from the technical and the
conceptual viewpoints. That being said, there are, I believe, some
advantages of using 0-Execution, which I will briefly discuss in the
concluding section.

7 Reconciliation

7.1 Two perspectives

In the previous section, we have seen that all the standard roles played
by Trivialization can be also played by 0-Execution. Yet, declar-
ing flatly that there is no difference between Trivialization and 0-
Execution still does not seem entirely accurate, at least as far as the
involved intuitions are concerned. I believe there is a difference be-
tween them, but it is a difference of informal perspectives that cannot
be expressed within the conceptual framework of TIL.

To illustrate this difference, we will need to keep in mind two
things: our treatment of 0-Execution as a degenerate case of Execu-
tion and Tichý’s original informal explanation of Trivialization. Re-
call that according to Tichý, Trivialization is “the trivial construction
whose starting point, as well as outcome, is X itself.” ([9], p. 63). So
its construction “path” goes from X to X. But going from X to X
can be also understood as not going at all, i.e., as starting from X
and simply staying there. The following diagram (see fig. 1) should



Going Nowhere and Back

0-Execution Trivialization

Figure 1: Difference between 0-Execution and Trivialization perspec-
tives

make this distinction clearer.
Thus, we could perhaps best understand 0-Execution as giving us

the following informal instruction:11 “start at A and go to B and
A = B”. On the other hand, Trivialization tells us: “start at A and
do not go anywhere”, or alternatively “stay at A”. In both cases we
end up at A, but the ways how we got there are slightly different.

So, just as there is an intuitive difference between going out and
returning to the same spot and not going out at all, so there is a differ-
ence between 0-Execution and Trivialization. It is not an important
difference from a logical, or even a procedural point of view, but it can
help us to explain the clash of intuitions associated with 0-Execution
and Trivialization.

From this viewpoint, 0-Execution and Trivialization can be un-
derstood as capturing two different perspectives of the correspond-
ing underlying construction typically denoted as 0X. Furthermore,
these two perspectives are not incompatible – we can easily imagine
the “frivolous” path of 0-Execution as shrinking into the trivial path
of Trivialization, which is just the starting point (similarly, as we
can imagine a circle shrinking into a point). The following diagram
(see fig. 2) depicts this process. Therefore, the difference between 0-
Execution and Trivialization does not seem to be a simple matter of
terminological preference but rather of different conceptual perspec-
tives, each emphasizing different aspects of the construction known as

11In the style of Tichý’s original informal explanation of Trivialization.



Pezlar

0-Execution Trivialization

Figure 2: Transformation of the path perspective into the destination
one

both 0-Execution and Trivialization. The former emphasizes its path,
the latter its destination.

Are there some contexts where one perspective might be more
suitable than the other? I believe so, e.g., when investigating foun-
dational aspects of constructions it might be more beneficial to think
of Trivialization in terms of 0-Execution. On the other hand, when
dealing with more applied aspects of TIL, such as natural language
analysis, opting for the Trivialization perspective might be more ad-
visable, as in these cases we are not primarily interested in the inner
workings of TIL constructions, they are mostly just a means to an
end.

7.2 Pragmatic aspects

In this paper, I have focused on the technical and conceptual aspects
but I have left out, arguably, the most decisive aspects determining
the fate of 0-Execution – the pragmatic ones: habits, personal pref-
erences, didactic considerations, and continuity. To these concerns
I have little to say. If we prefer to use Trivialization instead of 0-
Execution explicitly just for these pragmatic reasons, I have no issues
with that. I just wanted to show that there is no technical or concep-
tual reason that would justify this choice. Aside from the practical
considerations, we seem to be free in choosing and switching between
0-Execution and Trivialization.

However, I would like to briefly discuss the last mentioned con-



Going Nowhere and Back

cern, continuity. It is true that most of the TIL literature talks about
“Trivialization”, on the other hand, the notation itself does not change
with the adoption of 0-Execution, it is just a matter of an informal
retroactive interpretation whether we will read 0X as 0-Execution or
Trivialization. And most importantly, we do not need to get rid of
Trivialization. We can keep it as it is – only with the added under-
standing that it is just a “disguised” Execution, specifically, its de-
generate case of 0-Execution, and not a construction of its own kind.
This newly acquired conceptual simplicity could lead to a system of
TIL that is easier to learn (for example, TIL, as presented in [5], relies
only on four basic constructions, namely, Variable, Closure, Compo-
sition, and n-Execution, instead of the standard six, i.e., Variable,
Closure, Composition, Trivialization, Single Execution, and Double
Execution). However, it might also have the opposite effect and pro-
duce a system that is more confusing, just as axiomatic systems with
less axioms are not necessarily easier to understand and work with
than systems with more axioms. Either way, this would be a matter
for an empirical investigation.

8 Final remarks

Is Trivialization the same as 0-Execution? Based on the reasons given
here, my answer is positive: yes, it is. There do not seem to be any
convincing technical or conceptual reasons why Trivialization cannot
be considered as a degenerate case of Execution. Of course, whether
it is also a good idea to present it as such from a practical stand-
point is another matter entirely. But if they are the same construc-
tion (i.e., given the same input, they produce the same output in
the same way), how do we explain the fact that different intuitions
seem to be associated with them? This, I believe, can be resolved
by recognizing the two possible perspectives we can take in regards
to 0-Execution/Trivialization, i.e., the path perspective and the des-
tination perspective, with the former perspective being transformable
into the latter: the “path” of 0-Execution can be contracted into a
starting/ending point of Trivialization.



Pezlar

References
[1] Marie Duží, Bjørn Jespersen, and Pavel Materna. Procedural Semantics

for Hyperintensional Logic: Foundations and Applications of Transparent
Intensional Logic. Springer, Dordrecht, 2010. doi:https://doi.org/
10.1007/978-90-481-8812-3.

[2] Bjørn Jespersen. Structured Lexical Concepts, Property Modifiers, and
Transparent Intensional Logic. Philosophical Studies, 172(2):321–345,
2015. doi:10.1007/S11098-014-0305-0.

[3] Bjørn Jespersen. Anatomy of a Proposition. Synthese, 196(4):1285–1324,
2019. doi:https://doi.org/10.1007/s11229-017-1512-y.

[4] Ivo Pezlar. On Two Notions of Computation in Transparent Inten-
sional Logic. Axiomathes, 29(2), 2019. doi:https://doi.org/10.1007/
s10516-018-9401-7.

[5] Ivo Pezlar. Type Polymorphism, Natural Language Semantics, and TIL.
Journal of Logic, Language and Information, forthcoming. doi:https:
//doi.org/10.1007/s10849-022-09383-w.

[6] Jiří Raclavský. Executions vs. Constructions. Logica et Methodologica,
7:63–72, 2003.

[7] Jiří Raclavský. Belief Attitudes, Fine-Grained Hyperintensionality and
Type-Theoretic Logic. College Publications, London, 2020.

[8] Jiří Raclavský, Petr Kuchyňka, and Ivo Pezlar. Transparentní inten-
zionální logika jako characteristica universalis a calculus ratiocinator.
Masaryk University Press (Munipress), Brno, 2015.

[9] Pavel Tichý. The Foundations of Frege’s Logic. de Gruyter, Berlin, 1988.


	Introduction and motivation
	Trivialization vs. 0-Execution
	What is Trivialization?
	What is 0-Execution?
	Technical aspects
	Conceptual aspects
	Reconciliation
	Two perspectives
	Pragmatic aspects

	Final remarks

